17 research outputs found

    State Transfer Between a Mechanical Oscillator and Microwave Fields in the Quantum Regime

    Full text link
    Recently, macroscopic mechanical oscillators have been coaxed into a regime of quantum behavior, by direct refrigeration [1] or a combination of refrigeration and laser-like cooling [2, 3]. This exciting result has encouraged notions that mechanical oscillators may perform useful functions in the processing of quantum information with superconducting circuits [1, 4-7], either by serving as a quantum memory for the ephemeral state of a microwave field or by providing a quantum interface between otherwise incompatible systems [8, 9]. As yet, the transfer of an itinerant state or propagating mode of a microwave field to and from a mechanical oscillator has not been demonstrated owing to the inability to agilely turn on and off the interaction between microwave electricity and mechanical motion. Here we demonstrate that the state of an itinerant microwave field can be coherently transferred into, stored in, and retrieved from a mechanical oscillator with amplitudes at the single quanta level. Crucially, the time to capture and to retrieve the microwave state is shorter than the quantum state lifetime of the mechanical oscillator. In this quantum regime, the mechanical oscillator can both store and transduce quantum information

    Optical Magnetometry

    Get PDF
    Some of the most sensitive methods of measuring magnetic fields utilize interactions of resonant light with atomic vapor. Recent developments in this vibrant field are improving magnetometers in many traditional areas such as measurement of geomagnetic anomalies and magnetic fields in space, and are opening the door to new ones, including, dynamical measurements of bio-magnetic fields, detection of nuclear magnetic resonance (NMR), magnetic-resonance imaging (MRI), inertial-rotation sensing, magnetic microscopy with cold atoms, and tests of fundamental symmetries of Nature.Comment: 11 pages; 4 figures; submitted to Nature Physic

    LTR Retrotransposons in Fungi

    Get PDF
    Transposable elements with long terminal direct repeats (LTR TEs) are one of the best studied groups of mobile elements. They are ubiquitous elements present in almost all eukaryotic genomes. Their number and state of conservation can be a highlight of genome dynamics. We searched all published fungal genomes for LTR-containing retrotransposons, including both complete, functional elements and remnant copies. We identified a total of over 66,000 elements, all of which belong to the Ty1/Copia or Ty3/Gypsy superfamilies. Most of the detected Gypsy elements represent Chromoviridae, i.e. they carry a chromodomain in the pol ORF. We analyzed our data from a genome-ecology perspective, looking at the abundance of various types of LTR TEs in individual genomes and at the highest-copy element from each genome. The TE content is very variable among the analyzed genomes. Some genomes are very scarce in LTR TEs (<50 elements), others demonstrate huge expansions (>8000 elements). The data shows that transposon expansions in fungi usually involve an increase both in the copy number of individual elements and in the number of element types. The majority of the highest-copy TEs from all genomes are Ty3/Gypsy transposons. Phylogenetic analysis of these elements suggests that TE expansions have appeared independently of each other, in distant genomes and at different taxonomical levels. We also analyzed the evolutionary relationships between protein domains encoded by the transposon pol ORF and we found that the protease is the fastest evolving domain whereas reverse transcriptase and RNase H evolve much slower and in correlation with each other

    The Mitochondrial Chaperone Protein TRAP1 Mitigates α-Synuclein Toxicity

    Get PDF
    Overexpression or mutation of α-Synuclein is associated with protein aggregation and interferes with a number of cellular processes, including mitochondrial integrity and function. We used a whole-genome screen in the fruit fly Drosophila melanogaster to search for novel genetic modifiers of human [A53T]α-Synuclein–induced neurotoxicity. Decreased expression of the mitochondrial chaperone protein tumor necrosis factor receptor associated protein-1 (TRAP1) was found to enhance age-dependent loss of fly head dopamine (DA) and DA neuron number resulting from [A53T]α-Synuclein expression. In addition, decreased TRAP1 expression in [A53T]α-Synuclein–expressing flies resulted in enhanced loss of climbing ability and sensitivity to oxidative stress. Overexpression of human TRAP1 was able to rescue these phenotypes. Similarly, human TRAP1 overexpression in rat primary cortical neurons rescued [A53T]α-Synuclein–induced sensitivity to rotenone treatment. In human (non)neuronal cell lines, small interfering RNA directed against TRAP1 enhanced [A53T]α-Synuclein–induced sensitivity to oxidative stress treatment. [A53T]α-Synuclein directly interfered with mitochondrial function, as its expression reduced Complex I activity in HEK293 cells. These effects were blocked by TRAP1 overexpression. Moreover, TRAP1 was able to prevent alteration in mitochondrial morphology caused by [A53T]α-Synuclein overexpression in human SH-SY5Y cells. These results indicate that [A53T]α-Synuclein toxicity is intimately connected to mitochondrial dysfunction and that toxicity reduction in fly and rat primary neurons and human cell lines can be achieved using overexpression of the mitochondrial chaperone TRAP1. Interestingly, TRAP1 has previously been shown to be phosphorylated by the serine/threonine kinase PINK1, thus providing a potential link of PINK1 via TRAP1 to α-Synuclein
    corecore