120 research outputs found
Expression of Snail2 in long bone osteosarcomas correlates with tumour malignancy
Snail2 is a marker of malignancy in epithelial tumours; however, in sarcomas, it is not known if this protein is present. Here we examine the expression of Snail2 in one type of sarcoma, osteosarcoma, and explore its relationship to tumour grade, subtype and anatomical location in cases of long bone and cranial bone osteosarcoma. Long bone osteosarcomas typically have a much greater metastatic capability and a poorer prognosis. We find that Snail2 is expressed in the three main subtypes of long bone osteosarcoma—osteoblastic, chondroblastic and fibroblastic. Regression analysis showed that Snail 2 expression was statistically correlated with tumour grade (p = 0.014) in all of these subtypes. Snail2 was only expressed in high-grade cranial bone osteosarcomas, suggesting a link between Snail2 expression and metastasis. This is the first time Snail2 has been associated with any sarcoma, and this study shows that Snail2 may be a useful prognostic marker for this disease
The E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients
Epithelial ovarian cancer is the leading cause of death among female genital malignancies. Reduced expression of the cell adhesion molecule E-cadherin was previously shown to be associated with adverse prognostic features. The role of the E-cadherin repressor Snail in ovarian cancer progression remains to be elucidated. We analysed formalin-fixed and paraffin-embedded specimens of 48 primary ovarian tumours and corresponding metastases for expression of E-cadherin and Snail by immunohistochemistry. We found a significant correlation between E-cadherin expression in primary cancers and their corresponding metastases (P<0.001). This correlation was found for Snail expression as well (P<0.001). There was a significant (P=0.008) association of reduced E-cadherin expression in primary ovarian cancer with shorter overall survival. Similarly, Snail expression in corresponding metastases (P=0.047) was associated with reduced overall survival of the patients. Additionally, the group of patients showing reduced E-cadherin and increased Snail immunoreactivity in primary tumours and corresponding metastases, respectively, had a significantly higher risk of death (P=0.002 and 0.022, respectively) when compared to the patient group with the reference expression profile E-cadherin positive and Snail negative. Taken together, the results of our study show that the E-cadherin repressor Snail is associated with lower overall survival of ovarian cancer patients
Early Development of the Central and Peripheral Nervous Systems Is Coordinated by Wnt and BMP Signals
The formation of functional neural circuits that process sensory information requires coordinated development of the central and peripheral nervous systems derived from neural plate and neural plate border cells, respectively. Neural plate, neural crest and rostral placodal cells are all specified at the late gastrula stage. How the early development of the central and peripheral nervous systems are coordinated remains, however, poorly understood. Previous results have provided evidence that at the late gastrula stage, graded Wnt signals impose rostrocaudal character on neural plate cells, and Bone Morphogenetic Protein (BMP) signals specify olfactory and lens placodal cells at rostral forebrain levels. By using in vitro assays of neural crest and placodal cell differentiation, we now provide evidence that Wnt signals impose caudal character on neural plate border cells at the late gastrula stage, and that under these conditions, BMP signals induce neural crest instead of rostral placodal cells. We also provide evidence that both caudal neural and caudal neural plate border cells become independent of further exposure to Wnt signals at the head fold stage. Thus, the status of Wnt signaling in ectodermal cells at the late gastrula stage regulates the rostrocaudal patterning of both neural plate and neural plate border, providing a coordinated spatial and temporal control of the early development of the central and peripheral nervous systems
Relationship between peripheral airway function and patient-reported outcomes in COPD: a cross-sectional study
<p>Abstract</p> <p>Background</p> <p>Health status, dyspnea and psychological status are important clinical outcomes in chronic obstructive pulmonary disease (COPD). However, forced expiratory volume in one second (FEV<sub>1</sub>) measured by spirometry, the standard measurement of airflow limitation, has only a weak relationship with these outcomes in COPD. Recently, in addition to spirometry, impulse oscillometry (IOS) measuring lung resistance (R) and reactance (X) is increasingly being used to assess pulmonary functional impairment.</p> <p>Methods</p> <p>We aimed to identify relationships between IOS measurements and patient-reported outcomes in 65 outpatients with stable COPD. We performed pulmonary function testing, IOS, high-resolution computed tomography (CT), and assessment of health status using the St. George's Respiratory Questionnaire (SGRQ), dyspnea using the Medical Research Council (MRC) scale and psychological status using the Hospital Anxiety and Depression Scale (HADS). We then investigated the relationships between these parameters. For the IOS measurements, we used lung resistance at 5 and 20 Hz (R5 and R20, respectively) and reactance at 5 Hz (X5). Because R5 and R20 are regarded as reflecting total and proximal airway resistance, respectively, the fall in resistance from R5 to R20 (R5-R20) was used as a surrogate for the resistance of peripheral airways. X5 was also considered to represent peripheral airway abnormalities.</p> <p>Results</p> <p>R5-R20 and X5 were significantly correlated with the SGRQ and the MRC. These correlation coefficients were greater than when using other objective measurements of pulmonary function, R20 on the IOS and CT instead of R5-R20 and X5. Multiple regression analyses showed that R5-R20 or X5 most significantly accounted for the SGRQ and MRC scores.</p> <p>Conclusions</p> <p>IOS measurements, especially indices of peripheral airway function, are significantly correlated with health status and dyspnea in patients with COPD. Therefore, in addition to its simplicity and non-invasiveness, IOS may be a useful clinical tool not only for detecting pulmonary functional impairment, but also to some extent at least estimating the patient's quality of daily life and well-being.</p
A comparative study between mixed-type tumours from human salivary and canine mammary glands
<p>Abstract</p> <p>Background</p> <p>In comparative pathology, canine mammary tumours have special interest because of their similarities with human breast cancer. Mixed tumours are uncommon lesions in the human breast, but they are found most frequently in the mammary gland of the female dogs and in the human salivary glands. The aim of the study was to compare clinical, morphological and immunohistochemical features of human salivary and canine mammary gland mixed tumours, in order to evaluate the latter as an experimental model for salivary gland tumours.</p> <p>Methods</p> <p>Ten examples of each mixed tumour type (human pleomorphic adenoma and carcinomas ex-pleomorphic adenomas and canine mixed tumour and metaplastic carcinoma) were evaluated. First, clinical and morphologic aspects of benign and malignant variants were compared between the species. Then, streptavidin-biotin-peroxidase immunohistochemistry was performed to detect the expression of cytokeratins, vimentin, p63 protein, estrogen receptor, β-catenin, and E-cadherin.</p> <p>Results</p> <p>After standardization, similar age and site distributions were observed in human and canine tumours. Histological similarities were identified in the comparison of the benign lesions as well. Metaplastic carcinomas also resembled general aspects of carcinomas ex-pleomorphic adenomas in morphological evaluation. Additionally, immunohistochemical staining further presented similar antigenic expression between lesions.</p> <p>Conclusion</p> <p>There are many similar features between human salivary and canine mammary gland mixed tumours. This observation is of great relevance for those interested in the study and management of salivary gland tumours, since canine lesions may constitute useful comparative models for their investigations.</p
Mab21l2 Is Essential for Embryonic Heart and Liver Development
During mouse embryogenesis, proper formation of the heart and liver is especially important and is crucial for embryonic viability. In this study, we showed that Mab21l2 was expressed in the trabecular and compact myocardium, and that deletion of Mab21l2 resulted in a reduction of the trabecular myocardium and thinning of the compact myocardium. Mab21l2-deficient embryonic hearts had decreased expression of genes that regulate cell proliferation and apoptosis of cardiomyocytes. These results show that Mab21l2 functions during heart development by regulating the expression of such genes. Mab21l2 was also expressed in the septum transversum mesenchyme (STM). Epicardial progenitor cells are localized to the anterior surface of the STM (proepicardium), and proepicardial cells migrate onto the surface of the heart and form the epicardium, which plays an important role in heart development. The rest of the STM is essential for the growth and survival of hepatoblasts, which are bipotential progenitors for hepatocytes and cholangiocytes. Proepicardial cells in Mab21l2-deficient embryos had defects in cell proliferation, which led to a small proepicardium, in which α4 integrin expression, which is essential for the migration of proepicardial cells, was down-regulated, suggesting that defects occurred in its migration. In Mab21l2-deficient embryos, epicardial formation was defective, suggesting that Mab21l2 plays important roles in epicardial formation through the regulation of the cell proliferation of proepicardial cells and the migratory process of proepicardial cells. Mab21l2-deficient embryos also exhibited hypoplasia of the STM surrounding hepatoblasts and decreased hepatoblast proliferation with a resultant loss of defective morphogenesis of the liver. These findings demonstrate that Mab21l2 plays a crucial role in both heart and liver development through STM formation
Single-cell multi-omics analysis of the immune response in COVID-19
Analysis of human blood immune cells provides insights into the coordinated response to viral infections such as severe acute respiratory syndrome coronavirus 2, which causes coronavirus disease 2019 (COVID-19). We performed single-cell transcriptome, surface proteome and T and B lymphocyte antigen receptor analyses of over 780,000 peripheral blood mononuclear cells from a cross-sectional cohort of 130 patients with varying severities of COVID-19. We identified expansion of nonclassical monocytes expressing complement transcripts (CD16+C1QA/B/C+) that sequester platelets and were predicted to replenish the alveolar macrophage pool in COVID-19. Early, uncommitted CD34+ hematopoietic stem/progenitor cells were primed toward megakaryopoiesis, accompanied by expanded megakaryocyte-committed progenitors and increased platelet activation. Clonally expanded CD8+ T cells and an increased ratio of CD8+ effector T cells to effector memory T cells characterized severe disease, while circulating follicular helper T cells accompanied mild disease. We observed a relative loss of IgA2 in symptomatic disease despite an overall expansion of plasmablasts and plasma cells. Our study highlights the coordinated immune response that contributes to COVID-19 pathogenesis and reveals discrete cellular components that can be targeted for therapy
Recommended from our members
Azotobacter genomes: the genome of Azotobacter chroococcum NCIMB 8003 (ATCC 4412)
The genome of the soil-dwelling heterotrophic N2-fixing Gram-negative bacterium Azotobacter chroococcum NCIMB 8003 (ATCC 4412) (Ac-8003) has been determined. It consists of 7 circular replicons totalling 5,192,291 bp comprising a circular chromosome of 4,591,803 bp and six plasmids pAcX50a, b, c, d, e, f of 10,435 bp, 13,852, 62,783, 69,713, 132,724, and 311,724 bp respectively. The chromosome has a G+C content of 66.27% and the six plasmids have G+C contents of 58.1, 55.3, 56.7, 59.2, 61.9, and 62.6% respectively. The methylome has also been determined and 5 methylation motifs have been identified. The genome also contains a very high number of transposase/inactivated transposase genes from at least 12 of the 17 recognised insertion sequence families. The Ac-8003 genome has been compared with that of Azotobacter vinelandii ATCC BAA-1303 (Av-DJ), a derivative of strain O, the only other member of the Azotobacteraceae determined so far which has a single chromosome of 5,365,318 bp and no plasmids. The chromosomes show significant stretches of synteny throughout but also reveal a history of many deletion/insertion events. The Ac-8003 genome encodes 4628 predicted protein-encoding genes of which 568 (12.2%) are plasmid borne. 3048 (65%) of these show > 85% identity to the 5050 protein-encoding genes identified in Av-DJ, and of these 99 are plasmid-borne. The core biosynthetic and metabolic pathways and macromolecular architectures and machineries of these organisms appear largely conserved including genes for CO-dehydrogenase, formate dehydrogenase and a soluble NiFe-hydrogenase. The genetic bases for many of the detailed phenotypic differences reported for these organisms have also been identified. Also many other potential phenotypic differences have been uncovered. Properties endowed by the plasmids are described including the presence of an entire aerobic corrin synthesis pathway in pAcX50f and the presence of genes for retro-conjugation in pAcX50c. All these findings are related to the potentially different environmental niches from which these organisms were isolated and to emerging theories about how microbes contribute to their communities
- …