17 research outputs found

    Stimulation of osteogenic differentiation in human osteoprogenitor cells by pulsed electromagnetic fields: an in vitro study

    Get PDF
    Background: Although pulsed electromagnetic field (PEMF) stimulation may be clinically beneficial during fracture healing and for a wide range of bone disorders, there is still debate on its working mechanism. Mesenchymal stem cells are likely mediators facilitating the observed clinical effects of PEMF. Here, we performed in vitro experiments to investigate the effect of PEMF stimulation on human bone marrow-derived stromal cell (BMSC) metabolism and, specifically, whether PEMF can stimulate their osteogenic differentiation. Methods: BMSCs derived from four different donors were cultured in osteogenic medium, with the PEMF treated group being continuously exposed to a 15 Hz, 1 Gauss EM field, consisting of 5-millisecond bursts with 5-microsecond pulses. On culture day 1, 5, 9, and 14, cells were collected for biochemical analysis (DNA amount, alkaline phosphatase activity, calcium deposition), expression of various osteoblast-relevant genes and activation of extracellular signal-regulated kinase (ERK) signaling. Differences between treated and control groups were analyzed using the Wilcoxon signed rank test, and considered significant when p < 0.05. Results: Biochemical analysis revealed significant, differentiation stage-dependent, PEMF-induced differences: PEMF increased mineralization at day 9 and 14, without altering alkaline phosphatase activity. Cell proliferation, as measured by DNA amounts, was not affected by PEMF until day 14. Here, DNA content stagnated in PEMF treated group, resulting in less DNA compared to control. Quantitative RT-PCR revealed that during early culture, up to day 9, PEMF treatment increased mRNA levels of bone morphogenetic protein 2, transforming growth factor-beta 1, osteoprotegerin, matrix metalloproteinase-1 and-3, osteocalcin, and bone sialoprotein. In contrast, receptor activator of NF-B ligand expression was primarily stimulated on day 14. ERK1/2 phosphorylation was not affected by PEMF stimulation. Conclusions: PEMF exposure of differentiating human BMSCs enhanced mineralization and seemed to induce differentiation at the expense of proliferation. The osteogenic stimulus of PEMF was confirmed by the up-regulation of several osteogenic marker genes in the PEMF treated group, which preceded the deposition of mineral itself. These findings indicate that PEMF can directly stimulate osteoprogenitor cells towards osteogenic differentiation. This supports the theory that PEMF treatment may recruit these cells to facilitate an osteogenic response in vivo. © 2010 Jansen et al; licensee BioMed Central Ltd

    Systematic review: conservative treatments for secondary lymphedema

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Several conservative (i.e., nonpharmacologic, nonsurgical) treatments exist for secondary lymphedema. The optimal treatment is unknown. We examined the effectiveness of conservative treatments for secondary lymphedema, as well as harms related to these treatments.</p> <p>Methods</p> <p>We searched MEDLINE<sup>®</sup>, EMBASE<sup>®</sup>, Cochrane Central Register of Controlled Trials<sup>®</sup>, AMED, and CINAHL from 1990 to January 19, 2010. We obtained English- and non-English-language randomized controlled trials or observational studies (with comparison groups) that reported primary effectiveness data on conservative treatments for secondary lymphedema. For English-language studies, we extracted data in tabular form and summarized the tables descriptively. For non-English-language studies, we summarized the results descriptively and discussed similarities with the English-language studies.</p> <p>Results</p> <p>Thirty-six English-language and eight non-English-language studies were included in the review. Most of these studies involved upper-limb lymphedema secondary to breast cancer. Despite lymphedema's chronicity, lengths of follow-up in most studies were under 6 months. Many trial reports contained inadequate descriptions of randomization, blinding, and methods to assess harms. Most observational studies did not control for confounding. Many studies showed that active treatments reduced the size of lymphatic limbs, although extensive between-study heterogeneity in areas such as treatment comparisons and protocols, and outcome measures, prevented us from assessing whether any one treatment was superior. This heterogeneity also precluded us from statistically pooling results. Harms were rare (< 1% incidence) and mostly minor (e.g., headache, arm pain).</p> <p>Conclusions</p> <p>The literature contains no evidence to suggest the most effective treatment for secondary lymphedema. Harms are few and unlikely to cause major clinical problems.</p

    The Brain's Router: A Cortical Network Model of Serial Processing in the Primate Brain

    Get PDF
    The human brain efficiently solves certain operations such as object recognition and categorization through a massively parallel network of dedicated processors. However, human cognition also relies on the ability to perform an arbitrarily large set of tasks by flexibly recombining different processors into a novel chain. This flexibility comes at the cost of a severe slowing down and a seriality of operations (100–500 ms per step). A limit on parallel processing is demonstrated in experimental setups such as the psychological refractory period (PRP) and the attentional blink (AB) in which the processing of an element either significantly delays (PRP) or impedes conscious access (AB) of a second, rapidly presented element. Here we present a spiking-neuron implementation of a cognitive architecture where a large number of local parallel processors assemble together to produce goal-driven behavior. The precise mapping of incoming sensory stimuli onto motor representations relies on a “router” network capable of flexibly interconnecting processors and rapidly changing its configuration from one task to another. Simulations show that, when presented with dual-task stimuli, the network exhibits parallel processing at peripheral sensory levels, a memory buffer capable of keeping the result of sensory processing on hold, and a slow serial performance at the router stage, resulting in a performance bottleneck. The network captures the detailed dynamics of human behavior during dual-task-performance, including both mean RTs and RT distributions, and establishes concrete predictions on neuronal dynamics during dual-task experiments in humans and non-human primates
    corecore