8,878 research outputs found

    Magneto-optics in pure and defective Ga_{1-x}Mn_xAs from first-principles

    Full text link
    The magneto-optical properties of Ga1x_{1-x}Mnx_{x}As including their most common defects were investigated with precise first--principles density-functional FLAPW calculations in order to: {\em i}) elucidate the origin of the features in the Kerr spectra in terms of the underlying electronic structure; {\em ii}) perform an accurate comparison with experiments; and {\em iii}) understand the role of the Mn concentration and occupied sites in shaping the spectra. In the substitutional case, our results show that most of the features have an interband origin and are only slightly affected by Drude--like contributions, even at low photon energies. While not strongly affected by the Mn concentration for the intermediately diluted range (xx\sim 10%), the Kerr factor shows a marked minimum (up to 1.5o^o) occurring at a photon energy of \sim 0.5 eV. For interstitial Mn, the calculated results bear a striking resemblance to the experimental spectra, pointing to the comparison between simulated and experimental Kerr angles as a valid tool to distinguish different defects in the diluted magnetic semiconductors framework.Comment: 10 pages including 2 figures, submitted to Phys. Rev.

    Letter between E. S. Jones and W. J. Kerr

    Get PDF
    Letters concerning a position in botany at Utah Agricultural College

    Emergence of the Shackleton Range from beneath the Antarctic Ice Sheet due to glacial erosion

    Get PDF
    This paper explores the long-term evolution of a subglacial fjord landscape in the Shackleton Range, Antarctica. We propose that prolonged ice-sheet erosion across a passive continental margin caused troughs to deepen and lower the surrounding ice-sheet surface, leaving adjacent mountains exposed. Geomorphological evidence suggests a change in the direction of regional ice flow accompanied emergence. Simple calculations suggest that isostatic compensation caused by the deepening of bounding ice-stream troughs lowered the ice-sheet surface relative to the mountains by ~800m. Use of multiple cosmogenic isotopes on bedrock and erratics (26Al, 10Be, 21Ne) provides evidence that overriding of the massif and the deepening of the adjacent troughs occurred earlier than the Quaternary. Perhaps this occurred in the mid-Miocene, as elsewhere in East Antarctica in the McMurdo Dry Valleys and the Lambert basin. The implication is that glacial erosion instigates feedback that can change ice-sheet thickness, extent, and direction of flow. Indeed, as the subglacial troughs evolve over millions of years, they increase topographic relief; and this changes the dynamics of the ice sheet. © 2013 Elsevier B.V

    The energy budget in Rayleigh-Benard convection

    Full text link
    It is shown using three series of Rayleigh number simulations of varying aspect ratio AR and Prandtl number Pr that the normalized dissipation at the wall, while significantly greater than 1, approaches a constant dependent upon AR and Pr. It is also found that the peak velocity, not the mean square velocity, obeys the experimental scaling of Ra^{0.5}. The scaling of the mean square velocity is closer to Ra^{0.46}, which is shown to be consistent with experimental measurements and the numerical results for the scaling of Nu and the temperature if there are strong correlations between the velocity and temperature.Comment: 5 pages, 3 figures, new version 13 Mar, 200

    Discovery of Gamma-ray Pulsations from the Transitional Redback PSR J1227-4853

    Full text link
    The 1.69 ms spin period of PSR J1227-4853 was recently discovered in radio observations of the low-mass X-ray binary XSS J12270-4859 following the announcement of a possible transition to a rotation-powered millisecond pulsar state, inferred from decreases in optical, X-ray, and gamma-ray flux from the source. We report the detection of significant (5σ\sigma) gamma-ray pulsations after the transition, at the known spin period, using ~1 year of data from the Large Area Telescope on board the Fermi Gamma-ray Space Telescope. The gamma-ray light curve of PSR J1227-4853 can be fit by one broad peak, which occurs at nearly the same phase as the main peak in the 1.4 GHz radio profile. The partial alignment of light-curve peaks in different wavebands suggests that at least some of the radio emission may originate at high altitude in the pulsar magnetosphere, in extended regions co-located with the gamma-ray emission site. We folded the LAT data at the orbital period, both pre- and post-transition, but find no evidence for significant modulation of the gamma-ray flux. Analysis of the gamma-ray flux over the mission suggests an approximate transition time of 2012 November 30. Continued study of the pulsed emission and monitoring of PSR J1227-4853, and other known redback systems, for subsequent flux changes will increase our knowledge of the pulsar emission mechanism and transitioning systems.Comment: 5 figures, 1 table, accepted for publication in ApJ, updated to reflect accepted version and add additional coautho

    The latitudinal distribution of ozone to 35 km altitude from ECC ozonesonde observations, 1982-1990

    Get PDF
    Electrochemical concentration cell (ECC) ozone-sonde observations, made in recent years at ten stations whose locations range from the Arctic to Antarctica, have yielded a self-consistent ozone data base from which mean seasonal and annual latitudinal ozone vertical distributions to 35 km have been derived. Ozone measurement uncertainties are estimated, and results are presented in the Bass-Paur (1985) ozone absorption coefficient scale adopted for use with Dobson ozone spectrophotometers January 1, 1992. The data should be useful for comparison with model calculations of the global distribution of atmospheric ozone, for serving as apriori statistical information in deriving ozone vertical distributions from satellite and Umkehr observations, and for improving the satellite and Umkehr ozone inversion algorithms. Attention is drawn to similar results based on a less comprehensive data set published in Ozone in the Atmosphere, Proceedings of the 1988 Quadrennial Ozone Symposium where errors in data tabulations occurred for three of the stations due to inadvertent transposition of ozone partial pressure and air temperature values

    Quasilocal Energy for a Kerr black hole

    Get PDF
    The quasilocal energy associated with a constant stationary time slice of the Kerr spacetime is presented. The calculations are based on a recent proposal \cite{by} in which quasilocal energy is derived from the Hamiltonian of spatially bounded gravitational systems. Three different classes of boundary surfaces for the Kerr slice are considered (constant radius surfaces, round spheres, and the ergosurface). Their embeddings in both the Kerr slice and flat three-dimensional space (required as a normalization of the energy) are analyzed. The energy contained within each surface is explicitly calculated in the slow rotation regime and its properties discussed in detail. The energy is a positive, monotonically decreasing function of the boundary surface radius. It approaches the Arnowitt-Deser-Misner (ADM) mass at spatial infinity and reduces to (twice) the irreducible mass at the horizon of the Kerr black hole. The expressions possess the correct static limit and include negative contributions due to gravitational binding. The energy at the ergosurface is compared with the energies at other surfaces. Finally, the difficulties involved in an estimation of the energy in the fast rotation regime are discussed.Comment: 22 pages, Revtex, Alberta-Thy-18-94. (the approximations in Section IV have been improved. To appear in Phys. Rev. D

    Nonnegatively curved homogeneous metrics obtained by scaling fibers of submersions

    Full text link
    We consider invariant Riemannian metrics on compact homogeneous spaces G/H where an intermediate subgroup K between G and H exists, so that the homogeneous space G/H is the total space of a Riemannian submersion. We study the question as to whether enlarging the fibers of the submersion by a constant scaling factor retains the nonnegative curvature in the case that the deformation starts at a normal homogeneous metric. We classify triples of groups (H,K,G) where nonnegative curvature is maintained for small deformations, using a criterion proved by Schwachh\"ofer and Tapp. We obtain a complete classification in case the subgroup H has full rank and an almost complete classification in the case of regular subgroups.Comment: 23 pages; minor revisions, to appear in Geometriae Dedicat

    JHK Observations of Faint Standard Stars in the Mauna Kea Near-Infrared Photometric System

    Get PDF
    JHK photometry in the Mauna Kea Observatory (MKO) near-IR system is presented for 115 stars. Of these, 79 are UKIRT standards and 42 are LCO standards. The average brightness is 11.5 mag, with a range of 10 to 15. The average number of nights each star was observed is 4, and the average of the internal error of the final results is 0.011 mag. These JHK data agree with those reported by other groups to 0.02 mag. The measurements are used to derive transformations between the MKO JHK photometric system and the UKIRT, LCO and 2MASS systems. The 2MASS-MKO data scatter by 0.05 mag for redder stars: 2MASS-J includes H2O features in dwarfs and MKO-K includes CO features in giants. Transformations derived for stars whose spectra contain only weak features cannot give accurate transformations for objects with strong absorption features within a filter bandpasses. We find evidence of systematic effects at the 0.02 mag level in the photometry of stars with J<11 and H,K<10.5. This is due to an underestimate of the linearity correction for stars observed with the shortest exposure times; very accurate photometry of stars approaching the saturation limits of infrared detectors which are operated in double-read mode is difficult to obtain. Four stars in the sample, GSPC S705-D, FS 116 (B216-b7), FS 144 (Ser-EC84) and FS 32 (Feige 108), may be variable. 84 stars in the sample have 11< J< 15 and 10.5<H,K<15, are not suspected to be variable, and have magnitudes with an estimated error <0.027 mag; 79 of these have an error of <0.020 mag. These represent the first published high-accuracy JHK stellar photometry in the MKO photometric system; we recommend these objects be employed as primary standards for that system [abridged].Comment: Accepted for publication in MNRAS, 14 pages, 5 Figure

    The Proper Motion of SgrA*: I. First VLBA Results

    Full text link
    We observed Sgr A* and two extragalactic radio sources nearby in angle with the VLBA over a period of two years and measured relative positions with an accuracy approaching 0.1 mas. The apparent proper motion of Sgr A* relative to J1745-283 is 5.90 +/- 0.4 mas/yr, almost entirely in the plane of the Galaxy. The effects of the orbit of the Sun around the Galactic Center can account for this motion, and any residual proper motion of Sgr A*, with respect to extragalactic sources, is less than about 20 km/s. Assuming that Sgr A* is at rest at the center of the Galaxy, we estimate that the circular rotation speed in the Galaxy at the position of the Sun is 219 +/- 20 km/s, scaled by Ro/8.0 kpc. Current observations are consistent with Sgr A* containing all of the nearly 2.6 x 10^6 solar masses, deduced from stellar proper motions, in the form of a massive black hole. While the low luminosity of Sgr A*, for example, might possibly have come from a contact binary containing of order 10 solar masses, the lack of substantial motion rules out a "stellar" origin for Sgr A*. The very slow speed of Sgr A* yields a lower limit to the mass of Sgr A* of about 1,000 solar masses. Even for this mass, Sgr A* appears to be radiating at less than 0.1 percent of its Eddington limit
    corecore