433 research outputs found

    Proton lifetime bounds from chirally symmetric lattice QCD

    Full text link
    We present results for the matrix elements relevant for proton decay in Grand Unified Theories (GUTs). The calculation is performed at a fixed lattice spacing a^{-1}=1.73(3) GeV using 2+1 flavors of domain wall fermions on lattices of size 16^3\times32 and 24^3\times64 with a fifth dimension of length 16. We use the indirect method which relies on an effective field theory description of proton decay, where we need to estimate the low energy constants, \alpha = -0.0112(25) GeV^3 and \beta = 0.0120(26) GeV^3. We relate these low energy constants to the proton decay matrix elements using leading order chiral perturbation theory. These can then be combined with experimental bounds on the proton lifetime to bound parameters of individual GUTs.Comment: 17 pages, 9 Figure

    Geometry and Structural Modeling for High-Fidelity Aircraft Conceptual Design Optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140431/1/6.2014-2041.pd

    Development of Flutter Constraints for High-fidelity Aerostructural Optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/143080/1/6.2017-4455.pd

    Multimission Aircraft Fuel-Burn Minimization via Multipoint Aerostructural Optimization

    Full text link
    Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140677/1/1.J052940.pd

    The Hyperfine Splitting in Charmonium: Lattice Computations Using the Wilson and Clover Fermion Actions

    Full text link
    We compute the hyperfine splitting mJ/ψmηcm_{J/\psi}-m_{\eta_c} on the lattice, using both the Wilson and O(a)O(a)-improved (clover) actions for quenched quarks. The computations are performed on a 243×4824^3\times48 lattice at β=6.2\beta = 6.2, using the same set of 18 gluon configurations for both fermion actions. We find that the splitting is 1.83\err{13}{15} times larger with the clover action than with the Wilson action, demonstrating the sensitivity of the spin-splitting to the magnetic moment term which is present in the clover action. However, even with the clover action the result is less than half of the physical mass-splitting. We also compute the decay constants fηcf_{\eta_c} and fJ/ψ1f^{-1}_{J/\psi}, both of which are considerably larger when computed using the clover action than with the Wilson action. For example for the ratio fJ/ψ1/fρ1f^{-1}_{J/\psi}/f^{-1}_{\rho} we find 0.32\err{1}{2} with the Wilson action and 0.48±30.48\pm 3 with the clover action (the physical value is 0.44(2)).Comment: LaTeX file, 8 pages and two postscript figures. Southampton Preprint: SHEP 91/92-27 Edinburgh Preprint: 92/51

    The Status of Lattice Calculations of the Nucleon Structure Functions

    Get PDF
    We review our progress on the lattice calculation of low moments of both the unpolarised and polarised nucleon structure functions.Comment: 6 pages, contribution to 29th International Symposium on the Theory of Elementary Particles, Buckow, Germany, (29 August - 2 September 1995). 6 pages, Latex, requires espcrc2.sty, epsf.st

    Quenched QCD with O(a) improvement: I. The spectrum of light hadrons

    Get PDF
    We present a comprehensive study of the masses of pseudoscalar and vector mesons, as well as octet and decuplet baryons computed in O(a) improved quenched lattice QCD. Results have been obtained using the non-perturbative definition of the improvement coefficient c_sw, and also its estimate in tadpole improved perturbation theory. We investigate effects of improvement on the incidence of exceptional configurations, mass splittings and the parameter J. By combining the results obtained using non-perturbative and tadpole improvement in a simultaneous continuum extrapolation we can compare our spectral data to experiment. We confirm earlier findings by the CP-PACS Collaboration that the quenched light hadron spectrum agrees with experiment at the 10% level.Comment: 36 pages, 7 postscript figures, REVTEX; typo in Table XVIII corrected; extended discussion of finite-size effects in sections III and VII; version to appear in Phys. Rev.
    corecore