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Abstract

The aim of the work described in this thesis is to investigate the pure and 

defective surface properties of ceramic oxides, specifically aluminium oxide, 

lanthanum cuprate and neodymium cuprate using computer simulation techniques. 

(X-AI2O3 is a model system for ceramic oxides and is used to establish the reliability 

of the techniques. An important unresolved question that is addressed is how dopants 

control the surface properties and sintering behaviour of a-Al20 3. La2Cu04 and 

Nd2Cu04 are important because they are the parent compounds of high temperature 

superconductors. The structure and composition of their interfaces play a decisive role 

in influencing the surface conductivity and the intergranular weak links.

Chapter 1 provides an introduction to recent developments in ceramic oxides 

and a brief discussion on the current state of experimental and simulation techniques 

for determining their surface properties. The following two chapters (Chapter 2 and 3) 

outline the theoretical methods and the methods used for deriving the potential 

models employed in this thesis respectively. The calculation of surface Madelung 

energies and surface vibrational properties are described. The use of potentials, 

originally derived from bulk properties, in surface calculations is discussed.

The remainder of this thesis presents the calculated results. In Chapter 4, the 

segregation of magnesium and calcium to the basal and {1010} prism surfaces of 

a-Al20 3 is discussed. Calculations on surface and segregation potential energies are 

compared to surface segregation free energies. The results establish the importance of 

the vibrational entropy contribution to calculated free energies in corundum structured 

oxides.

In Chapter 5, the structures and energies of the {100} and {001} surfaces of 

La2Cu04 and Nd2Cu04 are considered. They are compared to the calculations on the 

energies of the higher index surfaces of the two cuprates. The results are used to
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demonstrate that an adequate account of surface relaxation must be included when 

comparing the relative stabilities of ternary oxide surfaces.

The formation energies of intrinsic defects and the solution energies of 

divalent and tetravalent impurities at the {100} and {001} surfaces of La2Cu0 4 and 

Nd2Cu04 are discussed in Chapter 6. The methods are used to calculate the 

non-stoichiometry and the composition of the surfaces and the results are compared 

with bulk behaviour. Space charge effects in the two cuprates are also discussed.
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Chapter 1 

Introduction

A knowledge of the composition, structure and energetics of ceramic oxide 

surfaces is a prerequisite for understanding many processes in materials science. Such 

processes include catalysis, corrosion, crystal growth and high Tc behaviour. Despite 

recent developments in surface analytical techniques (1,2), however, data on the 

surface atomic arrangements of oxides are still difficult to obtain and hence sparse

(3). Atomistic simulation is therefore not only of use in the interpretation of existing 

experimental data, but also in the investigation and prediction of surface properties 

outside usual or accessible experimental conditions. A brief review of recent 

developments in experiment and simulation is given after a discussion on why interest 

in ceramic oxides has increased dramatically over the last few years.

1.1 Recent Developments

1.1.1 Ceramic Oxides

Among other properties, ceramic oxides exhibit a wide range of electrical 

behaviour (4). For example, ceramic oxides include the best insulators (e.g. A120 3 

with a band gap of about 9.9 eV (5)); both wide band gap and narrow band gap 

semiconductors (e.g. T i02 and Ti20 3 with band gaps of about 3.0 eV (6) and 0.1 eV

(4) respectively); metals (e.g. V203, NaxW 03 and Re03 (7)) and superconductors 

(e.g. BaPbi_xBix0 3 (8)). However, until recently the material with the highest 

superconducting critical temperature (Tc) of about 22 K was not a ceramic oxide, but 

the alloy Nb3Ge (9,10). This situation changed dramatically in 1986 when Bednorz
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and Mueller (11) discovered superconductivity in a phase of composition La-Ba-Cu-O 

with a Tc > 30 K. Soon afterwards, it was shown that the phase La2.xBaxCu04, which 

possesses the K2NiF4 structure, was responsible for this superconductivity (12). 

Further research into new high temperature ceramic superconductors concentrated on 

similar layered perovskites. Replacement of barium by strontium led to an increase in 

Tc (13) and this could also be achieved by the application of pressure (14). Work on 

systems within the phase, Y-Ba-Cu-O, by Wu et al. (15) led to the discovery that 

superconductivity could be sustained above the boiling point of liquid nitrogen (77 

K). The structure (16,17) of this ’new* quaternary high temperature superconductor 

was different from that of La2_xBaxCu04, but still included two dimensional planes of 

C u02. Compounds of bismuth also form layered compounds (18) and this feature 

prompted Michel et al. (19) to search for superconductivity in Bi-Sr-Cu-O phases. 

The resulting material, Bi2Sr2Cu2(>7 has a low Tc of 22 K but this can be increased 

significantly by doping with calcium (20,21,22). Sheng and Herman (23) noted that 

the Tc was also influenced by the size and charge of the lanthanide ions, rather than 

by their magnetic properties. They, therefore, replaced the rare earth cation with 

thallium which, in the trivalent state, has a similar ionic radius to Eu3+. The resulting 

thallium (III) barium copper oxide phase had a Tc of about 81 K. The critical 

temperature of this phase was subsequently increased by Hazen et al. (24) and Parkin 

et al. (25) by doping with calcium. The discovery of both the bismuth and thallium 

compounds showed that lanthanides were not needed for high temperature 

superconductors. The use of thallium brought its own problems because thallium 

oxide is not only volatile but also toxic.

Two common features of the high Tc compounds mentioned so far are (a) they 

all contain copper oxide planes and (b) under the right conditions they are hole or 

p-type superconductors. However, it has been shown recently that Cu02 planes are 

not an essential prerequisite for high Tc superconductivity. This is exemplified by the
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ceramic superconductors La2.xSrxNi04 (26), with the K2NiF4 structure and 

Baj.xKxBi03 (27), which has a three dimensional network of BiO bonds. The other 

common feature of the above compounds i.e. p-type superconductivity was also 

demonstrated to be non-essential for high Tc behaviour by Tokura et al. (28,29). They 

found evidence for electron or n-type superconductivity in the cuprates 

RE2.xCexCu04_y (RE=Pr, Nd, Sm). Further work using thorium instead of cerium (30) 

also led to n-type behaviour as did fluorine substituted for oxygen (31).

The phase of stoichiometric composition Tl2Ba2Ca2Cu30x, originally 

identified by Parkin et al. (25) over two years ago, presently holds the record for the 

highest Tc of 125 K.

1.1.2 Experiment

The surfaces and grain boundaries of ionic solids in general, and metal oxides 

in particular, are difficult to investigate and characterise experimentally. This is partly 

because it is difficult to obtain pure well characterised single crystals (32). A further 

deficiency is the surface charging problem. Charged particles used in many surface 

spectroscopic techniques interact with the surfaces of ceramic oxides making it 

difficult to resolve and interpret experimental data (33). This problem has recently 

been reduced by increasing the resolution, sensitivity and detection limits of electron 

optic techniques and has facilitated the probing of the outermost layers of the surface.

The current methods used in surface analysis can be divided roughly into those 

which give information on the chemical composition, the lattice structure, and the 

energetics of surfaces. The latter can be further sub-divided into investigations on 

electrons and phonons at surfaces. Determination of the lattice structure can be 

achieved either by exploiting the periodic long-range nature of the surfaces e.g. LEED 

(low energy electron diffraction) (34) or by investigating the surface structure with
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atomic resolution e.g. STM (Scanning Tunnelling Microscope) (1,35) and AFM 

(Atomic Force Spectroscopy) (2). The composition and energetics of surfaces can 

also be determined by investigating their interaction with electrons, ions, atoms and 

photons. Some of these techniques are non-destructive e.g. AES (Auger Electron 

Spectroscopy) (36) while others erode the surface structure (37). This latter effect can 

be used to investigate the composition with depth from the surface (37). A recent 

review of the versatility of the available surface techniques is given by Hirschwald 

(38).

1.13 Lattice Simulation

The development of efficient computer simulation techniques over the last 

twenty years has provided a notable complement to experiment in determining the 

properties of a wide range of materials. Initially, the defect structures of simple binary 

ionic solids were investigated. Norgett and Lidiard (39) showed that atomistic 

simulation could be used to reliably calculate the bulk defect properties of alkali 

halides. Catlow (40) extended the scope of atomistic simulation to include fluorite 

structured halides and oxides. The methods were further used to study both cubic (41) 

and non-cubic (42) oxides and, more recently, to study ternary (43) and 

multi-component systems (44). The development of surface codes built on the 

knowledge gained from the bulk defect simulation techniques. Initially surface studies 

were confined to alkali halides (45). Following the determination of reliable potentials 

describing the interatomic forces in ionic solids, cubic (46) and non-cubic binary 

oxide surfaces (47) were investigated.

The work on interfaces has not just been confined to the study of the structure 

and composition of free surfaces. Duffy and Tasker (48,49) have used atomistic 

simulation to investigate tilt grain boundaries in NiO and cation boundary diffusion
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(50). The scope of atomistic simulation has also been extended by Stoneham and 

Tasker (51) in their investigation of the structure of the boundary between the 

different dielectrics NiO and BaO. The inclusion of image charge effects, which 

influence many of the properties of interfaces between metals and ionic solids (52) 

will further increase the understanding of such processes as catalysis and corrosion 

(53).

Most simulations have neglected the vibrational contribution to the free 

energy and hence give structures and energies at 0 K. Calculations at elevated 

temperatures have been facilitated by Parker and Price (54) who developed a 

computer code based on lattice statics and dynamics to calculate the solid state phase 

diagrams of minerals (55). A similar approach has been used by Tasker (56) and 

Masri et al. (57) to study the vibrational properties of the (001) surfaces of LiF and 

MgO respectively.

The critical test of the quality of atomistic simulations is their ability to 

reliably reproduce the results of experimentally well-characterised systems. Where 

such comparisons have been made for surface segregation (58) the agreement is 

excellent. The inclusion of temperature effects has also led to some interesting and 

perhaps surprising observations e.g. some zeolites are predicted (59) to contract on 

heating and this has recently been confirmed by experiment (60).

1.2 Aims of this Work

Previously, atomistic simulations have been used to calculate the composition, 

structure and stability of binary halide (45) and oxide (46,47) surfaces. Even though 

the vibrational contribution to the free energy of the lattice has been neglected in 

these simulations the agreement with experiment has been favourable (58). This 

implies that the calculated free energies are dominated by the internal energy of the
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lattice and this has been confirmed by simulations on cubic systems (57,61). The aim 

of the work described in Chapter 4 is to extend atomistic simulations to include the 

calculation of the free energy of non-cubic oxide surfaces. Calculations of the surface 

potential energies of a-Al20 3 and segregation potential energies of calcium and 

magnesium in a-Al20 3 are discussed and compared with surface and segregation free 

energies. Small additions of MgO are known to promote the sintering of alumina to 

full density, whereas the addition of CaO does not (62). The reason for this is still 

unclear, but is thought to involve differences in impurity segregation behaviour (62).

Multicomponent oxides are also important in materials research (63). For 

polycrystalline applications, the structure and composition of interfaces will influence 

the properties of these oxides (64). In Chapter 5 and Chapter 6, calculations on the 

surface structure and composition of two important ternary oxides are described. 

These are La2Cu04 and Nd2Cu04. In their stoichiometric forms they are 

semiconductors, but when doped they become superconducting (see section 1.1.1). 

Previous atomistic simulations on the parent compounds of these high Tc oxides have 

been concerned with their bulk defect properties. The calculated defect chemistry 

demonstrates why the materials properties of these two compounds are different (65). 

An understanding of their surface properties will also be important because they form 

superconducting weak links in the granular materials (66,67).
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Chapter 2

Theoretical methods

2.1 Introduction

In this chapter, the methods that are used in this thesis to determine lattice and 

defect energies of ionic and semi-ionic solids are described. The calculation of the 

lattice energy is complicated because of the long range nature of the Coulomb sums. 

This difficulty can be overcome by using the Ewald method (68) and is described in 

section 2.2. The methods can then be used to determine the energetically preferred 

structure by adjusting the ion positions until the lattice energy is at a minimum. This 

is achieved by an iterative Newton-Raphson technique which is discussed in section

2.3. The treatment of isolated point defects uses a related procedure to find the 

minimum defect energy in the bulk. This was achieved by Norgett (69) who 

developed a computer code for partitioning the crystal into two regions surrounding 

the defect. Many accounts (70,71) of this method are available and so only the salient 

features of the technique will be given.

When modelling surfaces, two dimensional boundary conditions are used. 

This has important consequences for simulations, particularly in the calculation of the 

Coulombic interaction energy. Thus in section 2.5, the way in which the Ewald 

technique, originally derived for 3-dimensional problems, is adapted to study 

interfaces is described. This has since become known as the Parry Method (72,73). 

The treatment of charged defects at surfaces and interfaces is similar to that in 

3-dimensions but, again, is complicated by the presence of the boundary. The extra 

interactions that must be included are given in section 2.6.

Lattice and defect energies calculated by these methods strictly correspond to
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potential energies at constant volume and 0 K. They can be extended to include the 

effects of temperature using lattice dynamics and molecular dynamics. Lattice 

dynamics is used in this thesis and is described in section 2.7.

2.2 The Coulombic Contribution to the Lattice Energy

The electrostatic or Coulomb term dominates the cohesive energy of ionic or 

semi-ionic crystals. In 3-dimensions it can be written as:

where and qj are the charges of ions i and j separated by r^, 1̂  represent the lattice 

vectors associated with the 3 dimensional unit cell and are integers. The evaluation 

of the Tjj' 1 term is problematic because it converges slowly with increasing ion 

separation. However, Ewald showed that by exploiting the periodic nature of the 3 

dimensional lattice the electrostatic energy can be converted into two rapidly 

converging series. This is achieved by separating the identity (74):

Ufcj) = Ei9tj qj qj (2  Ir-j + 1 ^  + \& 2 + h^Y1 (2.1)

1/r = 2/tc1/2 j0°° exp(-r2t2) dt (2.2)

into two terms:

1/r = 2/t i1/2 [Jq1* exp(-r2t2) dt 

+ Ĵ 00 exp(-rV) dt] (2.3)

where t is a variable and T| is a parameter chosen to give fast convergence of the final 

result. The first term, I1? in equation 2.3 can be transformed into reciprocal space by
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Fourier analysis to give:

I, = 2/tc1/2J0t1 dt l/(2tit1/2)3.

Jo”  d3K exp(-K2/4t2)exp(-iK.r) (2.4)

The first integral can be evaluated by making the variable change s =-K2/4t2. The 

second integral, Jo°° d3K, can be replaced by a summation over K vectors defined so 

that:

K = 271(^1  ̂+ n^k + n3k) (2.5)

where nj, n2 and n3 are integers, kj, k2 and satisfy the relation kjay = Sjj/N1̂  where 

a, is a fundamental lattice vector, 5y is the Kroenecker delta (one when i=j but 

otherwise 0) and N is the number of unit cells in the crystal. The volume per K vector 

is (27t)3k1.(k2xk3) which is (27t)3/NVc where Vc is the volume of the unit cell. Thus, Ij 

becomes:

Ij = 4tc/NVc I K(l/K2)exp(-K2/4t2) exp(-iK.r) (2.6)

The second term, I2, in equation 2.3 is evaluated in real space using the 

identity:

I2 = l/rerfc(rir) (2.7)

where erfc(r) is the complementary error function and is related to erf(r), the 

error function by:



erf(r) = 1 - erfc(r) (2.8)

The Coulombic energy can then be determined by substituting 2.3 into 2.1 

once 2.6 and 2.7 have been found. Note that the evaluation of 2.6 can be simplified 

because the sum I^expC-iK.ij) is zero if the sum over lattice vectors, 1, is complete and 

vector K is other than 2n times a reciprocal lattice vector. When K is 2n times a 

reciprocal lattice vector, which is defined as G, then the sum over a complete set of 

lattice sites is N, the number of unit cells in the crystal. The Coulombic contribution 

to the lattice energy is then:

Ufeji) = 4?t/V Eq (l/G2)exp(-G2/4ii) Ey’ exp(-iG.ry)

+ £ ijf q.Gj erfc(rirjji)/rijl (2.9)

where the self interaction terms are omitted.

The electrostatic contribution to the cohesive energy of a 2 dimensional lattice 

can be calculated by an analogous method and this is discussed in section 2.5. In the 

following section, the approach that is used to determine the minimum energy 

configuration is discussed.

2.3 Minimisation Method

The minimum energy configuration of the lattice can be determined by either 

minimising the internal bulk strains or minimising both the bulk and basis strains 

acting on the unit cell. These alternative methods are referred to as minimisation to 

constant volume and minimisation to constant pressure respectively. A common 

feature of both these techniques is the use of the Newton-Raphson variable metric
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method (75) which requires the first and second derivatives of the lattice energy with 

respect to the strains. The convergence of the lattice energy is rapid using this 

approach. However, when large numbers of ions are considered the calculation may 

require excessive amounts of computer resources because of the time taken to 

calculate and store the inverse of the second derivative matrix. The way in which this 

is incorporated in the constant volume minimisation is now described.

2.3.1 Constant Volume Minimisation

The aim of this approach is to remove the net forces acting on the ions in the 

lattice. This is achieved by expanding the lattice energy to second order about a point

I (76):

U(r’) = U(r) + gT5 + 1/26T.W.8 (2.10)

where 5 is the displacement of a given ion,

5 = r ’ - r (2.11)

g is the force acting on the ion,

g = 3U/9r (2.12)

and W is the second derivative matrix:

W = d2U /M r (2.13)
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By utilising the condition that the net forces on the ions at equilibrium are zero then:

6 = - ^ - ‘g (2.14)

The minimum energy configuration can be obtained by updating the coordinates by 5 

over a number of iterations. The inherent difficulties associated with this approach lie 

with the storage of the inverse of the second derivative matrix, and the time taken to 

evaluate it. The second problem can be reduced by finding an approximation for W'1 

and recalculating W'1 explicitly after a specified number of iterations (75). Equation

2.14 is rewritten as:

5 = -X£[.g (2.15)

in which H, the Hessian matrix, is set initially to W_1 and X is a linear parameter. 

Therefore, for the n+1 iteration the new coordinate positions are given by:

(216)

with

5n = rn+l-I»  (2-17)

Then, using an approximation developed by Davidson (77), Fletcher and Powell (78), 

the Hessian for the next iteration can be estimated by:

Hn+l = Hn '  (5n-8„T)/(5nT-:rn) - ( H ^ . ^ - H ^ n )  (2.18)
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where y = g ^  - gn. This approach requires the recalculation of the first derivatives g 

and is much less time consuming than recalculating the second derivative matrix 

every iteration.

2.3.2. Constant Pressure Minimisation

The aim of the constant pressure energy minimisation is to remove the bulk 

strains acting on the unit cell as well as the basis strains acting on the ions. The bulk 

strains are defined by (79):

matrix and r* the resultant coordinates and lattice vectors after applying the strains. 

The strain can be calculated from Hooke’s law (stress is proportional to strain) and 

requires the determination of the first and second derivatives of the lattice energy with 

respect to the strain. The first derivative is the stress or mechanical pressure P, while 

the second derivatives are the elastic constants C. The strain e is then:

r ’ = (I + e)r (2.19)

where e is the strain in the original coordinates and lattice vectors, I is the identity

(2.20)

where the constant of proportionality C'1 is the elastic compliance tensor. 

The mechanical pressure is calculated from:

Pj = dU/dej = (dU/dr).(dr2/d6j).(dr/dr2) (2 .21)

where dr2/d|j is evaluated from the square equation 2.19 at zero strain. The
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transformation of r to r* will also result in changes in the reciprocal lattice vectors and 

unit cell volumes. The expressions describing these changes are analogous to equation 

2.19 and are given by:

G’ = (! + €)-'.G (2.22)

and

V’c = detQ + g).VC (2.23)

The second derivatives of the lattice energy with respect to both the bulk and 

basis strains are evaluated by writing equation 2.10 as:

U(r’) = U(r) + l ^ . V ^  + 8t .Wj.6.A|

+ l/2Ae.^ee.Ae (2.24)

where W,.e = 32U/3r3e and W€€ = d2U/dede. As before, applying the equilibrium 

condition gives:

5 = -(Wrr1.Wrt.A6) (2.25)

Then

U(r’) = U(r) + l/2A^.(^et -

(2.26)
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The elastic constants are defined as the second derivative of the lattice energy with 

respect to strain and normalised with respect to the unit cell volume. They are 

therefore given by:

£  = l/VcQ ^ e - W ^.W ^.W ^) (2.27)

Thus substituting equations 2.27 and the relationships for the mechanical pressure 

(equations 2.20, 2.21) into equation 2.19 the strain can be found to give the new 

lattice vectors and coordinate positions. As the energy is not harmonic the bulk strains 

must be recalculated over a few iterations before the minimum energy configuration 

is reached.

2.4 Calculation of Point Defect Energies in a 3 Dimensional Lattice

The major problem associated with the calculation of defect energies is the 

treatment of relaxation about the defect. This can be overcome by assuming that 

relaxation is greatest in the immediate vicinity of the defect and falls of fairly rapidly 

at distances away from the defect. Thus the approach (69) is to treat the crystal as 

being composed of two regions (figure 2.1); an inner region, region I, which 

surrounds the defect where the ions are relaxed explicitly and an outer region where 

the effect of the defect is estimated by a continuum approximation. The defect energy 

is then the difference in the lattice energy with and without the defect.
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(a) Bulk calculations

defect
Ila Hb

(b) Surface calculations

Figure 2.1: ’Two-region’ strategy used for defect calculations. Region I is the 
explicitly relaxed region including and surrounding the defect. Region Ha is 
constructed for charged defects. Region lib extends to infinity
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The total energy of the system is written as the sum of three terms:

U(x,y) = HCx) + Uiai(x,y) + Un(y) (2.28)

where Uj(x) is the energy of the inner region, Uj n(x>y) is the interaction between the 

two regions and Un(y) is the energy of the outer region, x represents the coordinates 

of ions in region I and y refers to the displacements in region II. The energy of the 

outer region, Un(y), cannot be solved exactly because it contains an infinite number 

of displacements. This problem can be overcome by writing this term as a quadratic 

function of the displacements in region II:

Un(y) = l/2yT.A-Y (2.29)

and also by assuming that the ions in region II are at their equilibrium positions. The 

latter is ensured by using the structure of the perfect lattice which has been minimised 

by the method described in section 2.3 and then increasing the size of region I until 

the defect energy has converged. On substituting for Un(y) into equation 2.28 and 

applying the equilibrium condition; y = y for equilibrium values of y i.e. the net forces 

acting on the ions in region II are zero, then:

3U/9yly=y = A.y + 3UIj I(x,y)/0y]y=̂  = 0 (2.30)

Equation 2.28 then becomes:

u = U!(x) + ui n(x,y) - l/23UItn(x,y)/9yly=y-y

(2.31)
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and, therefore, the equilibrium configuration of the defective lattice can found by 

minimising the net force acting on the ions in region I.

In the approach outlined above, the energy of the defect is calculated without 

the need to determine Un(y) explicitly. The interaction between region I and region II 

is evaluated by dividing region II into two regions; region IIA which surrounds region 

I and region IIB which extends to infinity. The short range interactions between ions 

in region I and region IIA are calculated explicitly, whereas the interaction between 

region I and IIB is described by a continuum approximation developed from classical 

polarisation theory by Mott and Littleton (80). In this approach the displacements in 

region IIB arise solely from the electric field produced by the total charge of the 

defect based at the origin. The polarisation P depends on the static dielectric constant 

of the material and at a distance r is given by:

P = l/4it (1 - 1/€0) Zer/r3 (2.32)

which leads to an t"4 interaction term in the energy.

The theory outlined above is adopted in the CASCADE (Cray Automatic 

System for the Calculation of Defect Energies) code (81) which a derivative of the 

HADES (Harwell Automatic Defect Evaluation System) code (69).

2.5 Calculation of the Energies of Extended Planar Defects

In this section, the calculation of the lattice energy of extended planar defects 

is described. This approach is embodied in the MIDAS program developed by Tasker 

(82). The crystal is described as a stack of charged planes which are periodic in two 

dimensions. The stack is divided into two regions (figure 2.2); region I which is 

adjacent to the surface and region II which represents the bulk of the crystal.
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Figure 2.2: Schematic representation of the crystal regions for 

a) a block calculation b) a surface calculation
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In region I the ions are allowed to relax to mechanical equilibrium while the ions in 

region II are held fixed relative to each other, although the region as a whole may 

move. Thus, energies at constant area are calculated. Free surfaces and grain 

boundaries can be investigated using this approach. Defects and impurities can also be 

considered provided that the net charge on the crystal is zero (83).

The surface energy Us per unit area is defined as:

Us = [U(X) - U(m)]/A (2.33)

where

U (\) = l /2 £ N2j5t l <Krij) (2.34)

and i is summed over all the ions in plane X, m is a bulk plane, A the unit cell area and 

N the number of ions in region I. <j>(rjj) is the potential between ions i and j.

The method by which the Coulomb energy is calculated is described by Parry 

(72,73) although a better description of it is given by Heyes et al. (84) and contains 

the G=0 term (G is the reciprocal lattice vector in section 2.2) erroneously omitted in 

Parry’s original derivation (72). This method is analogous to that given in section 2.2 

except that the two dimensional periodicity of the lattice is exploited. The expression 

corresponding to equation 2.1 is

U(r) = 1/2 Z / ^ q j  (Ify + iia, + I2a2l)-> (2.35)

where the sum is taken over the number of ions in region I, N(I) and region n , N(II). 

9i» Qj> j> Ii> Ij and &n have the same definition as before but is now a two 

dimensional lattice vector. As before, U(r) is determined by dividing the identity
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given in equation 2.2 into two parts; a real space contribution and a reciprocal space 

contribution. The real space contribution is evaluated from equation 2.7 without the 

inclusion of the self interaction term. The summation of the reciprocal space term is 

different however and must include the contribution to U(r) when G=0. In the Ewald 

summation this term vanishes because of the charge neutrality condition of the unit 

cell. At surfaces the calculations are performed by summing the Coulomb 

contribution of each plane in the crystal stack. Thus, if all the planes are charge 

neutral, the G=0 also vanishes e.g. unrelaxed MgO {100}. However, on relaxation the 

planes in the stack rumple and induce a dipole perpendicular to the surface. This leads 

to a finite value of the G=0 term. For charged planes this term is also non-zero. 

Consequently, it must be implicitly included in all surface relaxations. The reciprocal 

lattice contribution to the Coulomb energy thus becomes:

I2 = rc/A [ -2uijerf(rjUj) - 2exp(-t|uij)/r|7i1/2]

+ ti/A Zg*0 (1/G)(B + QexpGG.pij) (2.36)

where A is the area of the unit cell and

B = exp(G.Uij) erfc(G/2t| + Tjujj) (2.37)

C = exp(-G.Uij) erfc(G/2t| - tiu^) (2.38)

In equation 2.36 ijj has been resolved into two components Ujj perpendicular to the 

surface and pjj in the plane:

5j=H ij +  Eij (2.39)
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2r|/7C1/2 is subtracted from equation 2.36 to remove the self interaction term.

2.6 Calculation of Isolated Defect Energies Near Interfaces

In this section, the way in which the HADES program, outlined in section 2.4, 

has been modified to calculate point defect energies near interfaces is described. The 

resulting program, CHAOS (Computer simulation HAdes On Surfaces) (85), 

developed by Duffy and Tasker uses as a starting configuration the relaxed interface 

structure generated by MIDAS. The crystal is again divided into two regions (figure 

2.1). Region I is composed of circular discs of ionic planes which decrease in radius 

as the distance from the defect increases. Region II, the rest of the crystal, is treated as 

a dielectric continuum in which the ionic displacements are calculated by the 

Mott-Littleton method. The defect energy is the difference in energy between the pure 

and defective lattice.

Although the two region strategy is retained in CHAOS, the approach 

developed to cope with the electrostatic component of the point defect energy is 

different from HADES because of the presence of the interface. The interface 

removes the periodicity in one direction of the reference crystal and, therefore, the 

Coulomb contribution to the energy must be calculated by the Parry Method. The 

treatment of the ionic displacements and the energy of region II must also be modified 

because the r 4 summation does not allow for any structural variation around the 

planar defect. In CHAOS this energy is calculated by a combination of a discrete sum 

of planar integrals around the interface, and a volume integral over the remainder of 

the crystal. The planar integrals take explicit account of the dilation at the crystal 

boundary and are carried out for all planes in region I and II of the MIDAS stack. The 

energy of region IIB is then given by:
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EnB -  -Q2/2 [Eplanar + EyojumJ (2.40)

with

E p la n a r  = ^  Ok** lT°° 2rci/(i2 + rp2) dr (2.41)

and

E y o lu m e  — 1/2 ^  qkKk lRIlB“  (l/r4)2rtr2dr (2.42)

where rp is the perpendicular distance from the origin and plane p and t  is (RIIB2 - 

rp2)1/2.

When point defect energies are calculated for free surfaces Evoiume is reduced 

by a factor of 2 and the interaction of charged defects with image charge must be 

included. The image charge, qj, at an interface between dielectrics with different 

dielectric constants €j and €2 is given by (86):

Qi = Qdef^l ' €2)/(€i + €2) (2.43)

where qdef is the net charge of the defect and > e2. In this thesis, only dielectric 

discontinuities at free surfaces are considered and, therefore, e2 is equal to 1, the value 

for free space. The field due to the image charge must also be included when 

calculating the displacements of the ions in region IIA and the polarisation energy of 

region IIB. The image charge is situated half an interplanar spacing above the 

outermost plane of ions.

The image charge reduces the stability of isolated charged defects as they
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approach the free surface from the interior of the crystal (87). When two oppositely 

charged defects are brought towards the free surface from the crystal interior as a 

bound pair, the charge on one of the defects will interact with the image charge of the 

other and vica versa. Hence, the repulsion exerted by the dielectric discontinuity on 

the bound pair is reduced and its binding energy and stability are increased.

2.7 The Calculation of the Vibrational Free Energy

In the calculations described in the previous sections, no account was taken of 

the vibrational properties of the solid. Thus the calculated energies correspond to 

potential energies of the pure or defective lattice at 0 K. The vibrational component to 

the free energy can be determined by either molecular dynamics (88) or lattice 

dynamics (76). The way in which the two approaches differ is that with molecular 

dynamics the ions are simulated to move according to Newtons Laws of Motion 

whereas in lattice dynamics the ionic vibrations are calculated by the method of Bom 

and Huang (76). The advantage of the former method is that the full anharmonicity of 

the potential energy surface is investigated. This is because the atoms move and, thus, 

sample different parts of configurational space. In contrast, the atoms in lattice 

dynamics only sample the energy at specific lattice sites where the shape of the 

potential energy well is assumed to be harmonic. The disadvantage of molecular 

dynamics is that it is very computer time intensive (89,90) which precludes an 

adequate description of electronic polarisation. As the structures and stabilities of 

surfaces depend on the electronic polarisability (91), surface calculations were only 

performed using lattice dynamics.

The free energy is calculated by determining the vibrational frequencies of a 

periodic lattice (57) which can be found from:
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= D(g)e(g) (2.44)

which is an eigenvalue problem. In this equation m is the diagonal matrix of ionic 

masses, q is the reciprocal-lattice vector of lattice vibrations, e(q) is the polarisation 

vector describing the atomic displacement in the vibration, and D(q) is the dynamical 

matrix given by:

g (a )  = £ ij(d2U/ariarj)exp(ig.R) (2.45)

where R is the interionic separation, and 5 and rj are the atomic displacements from 

equilibrium positions of ions i and j. Note the dependence of D(q) on the second 

derivative of the lattice energy. For a unit cell containing n atoms, there are 3n 

solutions for a given value of q. The polarisation vectors are the eigen vectors of 

equation 2.44 while the square root of the eigenvalues give the vibrational 

frequencies. The vibrational contribution to the Helmholtz free energy is then given 

by:

F = kT Zq[ hco/2kT + ln(l - exp(-hco/2kT)] (2.46)

where k is Boltzmanns constant, h is Plancks constant and equation 2.46 is summed 

over all wave vectors q in the Brillouin zone. In practice, it is impractical to calculate 

the frequencies for all wave vectors and, therefore, some selective sampling method 

must be used. Ideally this method would predict the free energy accurately but sample 

as few points as possible. A variety of approaches for choosing sampling points have 

been suggested (92,93,94) but only those derived by the Fillippini method (94), which 

compares favourably with the other methods (95), were used in this thesis. In this 

method the points are chosen to lie on a general grid in 2 or 3 dimensions with
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appropriate weighting factors. The weighting factors depend on the number of times a 

point appears in the Brillouin zone and the area it represents. They are given in tables

2.1 and 2.2 along with their respective sampling points for bulk and surface 

calculations.

Equation 2.46 gives the Helmholtz free energy at a given lattice volume. In the 

harmonic approximation the volume is taken to be that of the 0 K structure and, 

therefore, as the temperature is increased lattice expansion is neglected. In the 

quasi-harmonic approximation, the vibrational frequencies are assumed to vary with 

volume. The kinetic pressure is then minimised to calculate the volume of the unit 

cell at the required temperature. The kinetic pressure is the derivative of the 

Helmholtz free energy with volume and for a cubic material can be found by 

rewriting the free energy as (96):

F = kT E q[ hco/2kT + ln(l - exp(-hco/2kT)] + (AV)2/2kV

(2.47)

where k is the compressibility. The first term comes from equation 2.46 and the 

second term represents the increase in the elastic energy due to lattice expansion. 

Putting (3F/3V)t as zero, the volume is found from:

AV/V = -KkT Zql/o) ((q))(3co (q)/3V) (2.48)

Once the kinetic pressure is evaluated, the constant pressure minimisation 

technique (section 2.3.2) can be employed for predicting the thermally equilibrated 

structure. In this case the total pressure becomes the sum of the kinetic, mechanical 

and applied hydrostatic pressure.
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Table 2.1: Reciprocal lattice points used for 3D calculations

Number of Points x y z weighting

1 0.25000 0.25000 0.25000 1.0

8 0.08333 0.08333 0.08333 1.0
0.08333 0.08333 0.03333 2.0
0.08333 0.33333 0.08333 2.0
0.08333 0.33333 0.33333 4.0
0.33333 0.08333 0.08333 2.0
0.33333 0.08333 0.33333 4.0
0.33333 0.33333 0.08333 4.0
0.33333 0.33333 0.33333 8.0

Table 2.2: Reciprocal lattice points used for 2D calculations

Number of Points x y z weighting

1 0.00000 0.25000 0.25000 1.0

4 0.00000 0.06250 0.06250 0.015625
0.000000.06250 0.31250 0.046875
0.000000.31250 0.06250 0.046875
0.000000.31250 0.31250 0.140625
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The disadvantage of the quasi-harmonic and the harmonic approaches is that 

the expansion of the lattice potential energy with respect to atomic position is 

truncated to second order (the harmonic term). The importance of higher order or 

anharmonic terms can thus be investigated by comparing the calculated and observed 

lattice expansion coefficients, (3:

(3 = 1/V dV/dT (2.49)

The theoretical method outlined above is the basis of the PARAPOCS code 

and is described in greater detail by Parker and Price (97).

The reliability of the calculations outlined above depend critically on the 

potential models that are used to describe the interionic forces in the crystal. 

Therefore, the focus of the following chapter is the derivation of reliable potential 

models.
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Chapter 3 

Potential Models 

3.1. Introduction

The introduction of sophisticated quantum simulations such as the Car 

Pamnello approach (98) has enabled researchers to calculate defect energies in metals 

(99) and the structures of semiconductor interfaces (100,101) without defining a 

potential model. The treatment of oxides by these methods is still in its infancy (102) 

because the required computational power is currently not available. Consequently, a 

more traditional technique was used to study the surface properties of oxides. This is 

atomistic simulation, in which the Bom model of solids is used to describe the 

interactions between ions. Two methods can be used to derive the potential models 

that are necessary for the Bom model. These are a non-empirical method, where the 

potentials are determined by numerical methods, and an empirical method, where the 

potentials are determined by fitting to experiment. Both types of potential were used 

in this thesis. Therefore, the methods by which they were derived is described, and 

their applicability to surface calculations is discussed. First, the nature of the Bom 

model is presented.

3.2 The Born Model of Solids

In the Born model of solids the lattice energy, Ufaj), is given by:

U(ry) = Zy* qiq/i-jj + Zy’ 4»ij(ry) (3.1)
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where qj and qj represent the integral ionic charges associated with the ions i and j, r  ̂

is the distance between these ions and <J>y is the short range interaction beween ions i 

andj.

The first term in equation 3.1 represents the electrostatic energy due to the 

interaction between charged ions. Although it converges slowly in real space, 

methods have been developed to sum it in rapidly in two (84) and three (68) 

dimensions. Both methods are used in this thesis and they were discussed in Chapter

2. The second term in equation 3.1 represents the short range interaction energies. 

These act between the centres of neighbouring ions, are highly repulsive at small r, 

and describe the overlap of the electron clouds. As the distance between ions i and j 

increases the interaction may include an attractive component arising from the effects 

of induction and covalency. A third term is sometimes incorporated into equation 3.1 

which corresponds to a three body or ’bond bending’ interaction and gives 

information on the directional nature of the bonding in crystals. It must be included in 

models of a-quartz (103) and other silicate minerals (55) to reproduce the correct 

elastic and dielectric data. However, three body terms were not found to be a 

necessary component of the potentials used in this work.

The two methods that were used to determine the short range potential are 

discussed in section 3.4. First, the inclusion of ionic polarisation in the model is 

discussed. This is particularly important when considering the dielectric response of 

the lattice to charged defects.

3.3 Ionic Polarisability

In rigid ion models, ion polarisability is neglected completely i.e. the high 

frequency dielectric constant of the material is unity. This type of potential must be 

used in molecular dynamical studies (104) because computer resources preclude the
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explicit inclusion of electronic polarisability. Rigid ion models can also be used in 

defect studies (105) if the short range parameters are chosen such that they correctly 

reproduce the static dielectric constants of the material. This is essential for modelling 

the response of the lattice to charged defects (106).

The neglect of ion polarisability limits the ability of the potential to reproduce 

the dynamical properties of the lattice because lattice vibrations are strongly 

influenced by ionic polarisation (107). It also restricts the treatment of defects at 

boundaries (108). As an adequate description of these is required for the work 

outlined here, an explicit representation of polarisability is required. The simplest 

model that does this is the point polarisable ion model which is now described.

3.3.1 Point Polarisable Ion (PPI) Model

In this model, the polarisability is fixed for an ion and is introduced via a 

dipole, m, induced by an electric field E where m is given by:

m = aE  (3.2)

and a  is the ion polarisability. Hence, the energy of the interacting dipoles can be 

calculated. This method has been employed in defect calculations but unfortunately it 

is found to be unsatisfactory because the calculated defect energies are substantially 

lower than the experimental ones (109). The problem lies with the inability of the 

model to allow the electronic charge distribution to distort as the ion environment 

changes i.e. the polarisability, a, does not change with a change in environment. This 

leads to an instability in the model which occurs when two dipoles increase without 

bound because their mutual dipole-dipole interaction outweighs the self-energy of 

polarisation. It is particularly acute for calculations that bring ions close together.
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Faux (110) showed that there is a critical distance rcrit as the two ions approach each 

other after which the interaction energy becomes divergent:

lcrit = (40iaj)1/6 (3.3)

This problem is overcome by the use of the shell model which is able to take account 

of the displacement of electrons when the ion is placed in a potential gradient i.e. the 

polarisability of the ion will change with a change in its environment.

3.3.2 The Shell Model

The shell model was originally proposed for use in defect calculations by 

Lidiard and Norgett (111) and is based on the model developed by Dick and 

Overhauser (112). It provides a simple mechanical description of coupling the core of 

nucleus, X, of an ion to the electronic charge cloud or shell of zero mass, Y, via a 

harmonic spring with force constant, k. The total ionic charge being the sum of X and 

Y. The interaction between the shell and core of an ion i is therefore:

<pi(ri) = kiri2 (3.4)

where the polarisability, a , of an ion is:

oti = Yi2/Ki (3.5)

and Kj = kj + rj with kj »  rj. In principle the parameters Y and K can be calculated by 

quantum mechanical methods. However, in practice this approach has been found to 

be unsatisfactory and, therefore, the parameters are derived by fitting to dielectric and



42

elastic constants and phonon frequencies. A review of polarisability and its effect on 

defect calculations is given by Catlow and Mackrodt (113).

The shell parameters, derived from bulk properties, were used in the surface 

calculations described in Chapters 4, 5 and 6. Fowler and Tole (114) used an ab initio 

SCF method to calculate the electronic structures of O2' and F‘ ions at unrelaxed 

surfaces, steps and comers of MgO and LiF and compared them to bulk calculations. 

They found that the anion polarisabilities increase with decreasing coordination. The 

rate of increase was much greater for O2' ions but was partially reduced by surface 

relaxation. Thus the present method for determining Shell parameters might introduce 

inadequacies into the calculations. However, Martin and Bilz (115) used a shell model 

that incorporated extra parameters to allow for such a variation between bulk and 

surface ions in MgO and concluded that surface topography was not influenced by 

this extra degree of freedom. Also, previous workers have found that the parameters 

do appear to be transferrable (116).

The short range forces forces are considered to act between the shells of ions. 

In this way the shell model allows for the distortion of the electron clouds by short 

range forces.

3.4 Derivation of Short Range Potential <J)jj(r)

As noted above, two types of potential model were used in this work and they 

differ in the way in which the short range pairwise interactions (equation 3.2) were 

calculated. In the first method the two-body potentials are derived by fitting to 

observed bulk crystal properties. In the second approach these interactions are 

obtained by an approximate quantum mechanical or non-empirical method.

As the surface environment is different from the bulk the use of bulk 

potentials in surface calculations must be justified. Lawrence (117) calculated two
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sets of short range potentials for 0*203 by non-empirical methods which reproduced 

the experimental bulk crystal properties. The difference in these potentials was that 

two Madelung well depths were chosen to calculate the electron densities of the O2' 

ion. This reflected the difference in the potential well in the bulk and at the surface. 

Comparison of the relaxations of the {0001}, {1120}, {1010}, {1012} and {lO l l} 

surfaces showed that they were insensitive to the change in potential. Fowler and Tole 

(114), who calculated the bulk and surface polarisabilities of O2’ and F ' ions discussed 

in the previous section, also used their ab initio SCF method to investigate other 

properties. They found that at the surface the effective anion size and shape was little 

different from that of the bulk. The insensitivity to environment was attributed to the 

cancellation of two competing factors. The electron density has more freedom to 

move at the surface because it has fewer neighbours. This serves to reduce the 

Madelung well depth and so the stabilising potential well is shallower. This effect is 

counterbalanced by the increase in the electrostatic field at the ion site pulling the 

electrons back into the solid. A similar conclusion was reached by Causa et al. (118). 

The transferability of potentials is also demonstrated by the good agreement between 

experimental and calculated segregation energies (58). The two ways in which the 

short range potentials are derived are now described.

3.4.1 Empirical Derivation of Short Range Parameters

In this approach, the repulsive interaction is assumed to be related to the ionic 

separation by the equation:

<j>ij(r) = Aijexp(-ri/pij) (3.7)

where the parameters A^ and p^ represent the relevant ion size and hardness (119).
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Equation 3.6 is known as the Bom-Mayer expression and was extended by 

Buckingham to take account of attractive van der Waals dispersive and covalent 

interactions:

= AijexpC-i-j/Pij) - Cjj/ry6 (3.7)

The parameters Ay, py and Cy are determined by least squares fitting to the known 

experimental crystal properties e.g. structural dielectric properties, cohesive energy, 

elastic constants, and phonon frequencies (120). Although this description of the short 

range interactions has been used successfully for a wide range of materials (121,122), 

there are two points that must be noted. The first is that it is often not possible to 

determine all the parameters Ay, py and Cy uniquely for each pair of ions because 

there is insufficient experimental data. Thus, to reduce the number of variables 

cation-cation interactions were neglected. This interaction is small, particularly at the 

distances that are of interest in solids and thus the approximation would seem to be 

adequate. The second point to note is that for properties calculated at interatomic 

distances far removed from the equilibrium lattice positions, the agreement with the 

non-empirical model outlined in the next section is not entirely satisfactory. This is 

particularly true for oxygen interstitials (117). In general though the comparison 

between these two methods is favourable.

The empirical potential was used in the work described in Chapter 4 to model 

alkaline earth impurity segregation in 0t-Al2O3. The parameters used are given in 

table 3.1 and were derived by Lewis and Catlow for CaO, MgO and a-Al20 3 (120).
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Table 3.1: Empirical Potential Parameters used in Chapter 4

A(eV) P(A) C(eV.A'6)

Aluminium-Oxygen 1474.4 0.3006 0.0

Calcium-oxygen 1090.4 0.3437 0.00

Magnesium-oxygen 1428.5 0.2945 0.0

Oxygen-oxygen 22764.3 0.149 27.88

Aluminium ion: Al3+ Y+ ( | e | ) 1.458

K+ (eVA‘2) 1732.0

Calcium ion: Ca2+ Y+ (lel) 3.135

K+ (eVA-2) 110.2

Magnesium ion: Mg2+ Y+ ( l e i ) 1.585

K+ (eVA'2 ) 361.6

Oxygen ion: O2' Y_ (1 d ) -3.0

K (eVA'2 ) 60.78
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3.4.2 Non-empirical or Electron Gas Methods

The non-empirical or electron gas method can be used to calculate the 

repulsive interactions between ions at different separations. It has three main 

advantages over the empirical method. The first advantage is that interaction energies 

can be determined for ion separations which are significantly different from those in 

the bulk. The second advantage is that potentials can be determined for crystals where 

there is little experimental data available. The third advantage of this approach, which 

is utilised in this thesis, is that interaction energies can be calculated for ions in 

different valence states consistently.

The electron gas method (123,124,125) is based on density functional theory 

which assumes (126) that the total energy of the system in the ground state is a unique 

function of the density distribution of the electrons (p). The total energy of the system 

is written as:

where Ecqul arises from all the coulombic interactions involving nuclear charges and 

electron clouds, E j is the kinetic energy, Erx is the exchange energy due to exchange 

symmetry of the electrons and Ecqrr is the correlation energy.

The electron density (Pab) ° f  the interacting system, AB is found from the 

Hartree-Fock electron densities, pA and pB, of the isolated closed shell species A and 

B. The electron densities are assumed to be additive:

E(p) -  E coul + E j(p ) + EEX(p) + Ecqrr(p ) (3.8)

PAB(r) = PaOO + PB(r) (3.9)

This approximation is appropriate for closed shell species such as inert gas
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atoms or ions in solids. For more covalent interactions of open shell atoms there will 

be substantial rearrangement of the electron density and, therefore, this assumption is 

inadequate.

Thus, the interaction energy (Ensrr) *s equal to:

The first term in equation 3.8 is the Coulomb interaction between all the 

charges (electrons and nuclei) and its contribution to the interaction energy is 

calculated by a method outlined by Kim and Gordon (125). Approximations to the 

three remaining terms in equation 3.8 must be made so that they may be evaluated 

from the Hartree-Fock electron density. This is achieved by using functionals which 

are derived from a uniform electron gas (127,128). Although this is not a good 

approximation near the nucleus (129), the contributions from these nuclear regions to 

the total energy of the interacting system are essentially the same as the sum of the 

corresponding contributions in the separate ions, so that the effects of the nuclear 

regions will cancel from the interaction energy. The functional forms of the kinetic, 

E j, and exchange, Eex, energies are approximated by:

Eint -  E(Pab) - E(pA) - E(Pb) (3.10)

ET(p) = cT /p(r)5« d r (3.11)

with cT = (3/ 10)(37t2)2/3 (3.12)

and

e e x  =  c e x  /  P(r)4fl * (3.13)



with cEX = -3/4(3/7i)1/3 (3.14)

Equation 3.13, the Slater-Dirac (130,131) exchange energy, does not depend on the 

total number of electrons in the system (N) and so does not tend to zero for N < 2 as it 

should. This leads to spurious long range minima in the interaction energy (125). This 

can be corrected (132) by using a correction factor of the form:

where y(N) = (3 - 88 + 652 - 54)/3 (3.15)

and 5 is related to the total number of electrons by:

N' 1 = 1/2(8S3 - 984 + 2) (3.16)

Equation 3.13 becomes:

e ex = -k b ( N A)pA((pA+PB)1/3 -P A1/3)dl-

- k b ( N B)pB((pA + pB)W -p BW)dr (3.17)

The difference between the Hartree-Fock and the exact non-relativistic energy 

is the correlation energy. This is best calculated by (133) splitting the energy into two 

components: a long range (ECOrrl) an^ a short range (ECOrrs) contribution. The 

short range contribution is adequately described by the electron gas model. It is given 

by:

e corrs -  f 6corr P(r) (3.18)
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where € C O r r  is an interpolation between high and low electron density limits and is

given in full by Allan, Cooper and Mackrodt (134).

In the calculation of the long range part of the correlation or dispersive energy, 

the electron gas approximation cannot be used (133). The origin of this interaction 

can be thought of as arising from coupling between instantaneous electric multipole 

moments in the participating atoms. The interaction can be calculated in perturbation 

theory and expressed as a multipole expansion:

This expression involves excitations in both atoms, although it may be divergent for 

any finite R because of overlap effects. Thus the best estimate of this asymptotically 

divergent series is obtained by truncating it at the smallest term. A further 

modification, suggested by Rae (135), is to rewrite the series as:

E CORRL -  • ^n>3 C3nR_2n (3.19)

E CORRL -  " ^n>3 Q2ngn(R )R ‘2n (3.20)

where

gn(R) = (1 + exp(-2(2R-Rn+Rn+1)/2(R„+1-Rn) '1

(3.21)

and

R n = ( C 2n/C2n.2)1' 2 (3.22)

As noted above, Hartree-Fock electron densities are required to calculate the
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energy of the system. Before doing this, some account of the Madelung field 

surrounding the ions in the crystal must be included. This is particularly important for 

the determination of the electronic structure of the O2" ion: in the free state it is 

unbound, but in an ionic crystal such as MgO the 2p level is bound by about 10 eV 

(136). Thus the Hartree-Fock equations are solved in an external spherical potential 

which is chosen to reproduce the Madelung potential at the relevant ion site. The form 

of the potential well is (136):

V(r) = -V0 r £ r x

V(r) = -Vorx/r r > r x (3.23)

where V0  is the well depth and rx is the ionic radius of the anion. For the cations, the 

"free-ion" electron densities are used because the "ffee-ion" radial distribution 

functions do not change appreciably in the solid state.

The non-empirical potentials that were used were calculated by Mackrodt at 

ICI (137) using the relationships outlined above and are given in Appendices 1, 2 and 

3. In Chapter 4 these potentials (Appendix 1) are compared with those derived 

empirically. In Chapter 5 potentials derived for the binary oxides La20 3, Nd2C>3 and 

CuO were used to model the surface properties of La2Cu04 and Nd2Cu04. The 

suitability of this approach for modelling ternary oxides has been demonstrated by 

numerous workers (138,139). Allan et al. (140) used these potentials to determine the 

most favourable structural forms of these oxides and found good agreement with 

experiment, even though no account of the Jahn-Teller effect is included in the model. 

Details of these potentials are given in Appendix 2. In chapter 6, the surface defect 

properties of these ternary oxides are discussed. A further set of potentials were
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required for Ce02, T h02, MgO, CaO, SrO and BaO and these are given in Appendix

3. The short range potentials used in these surface calculations were those that 

correctly predicted the bulk structure, except that a further k ’ term was added to the 

cation spring potentials. This was necessary because some relaxed core shell 

separations were physically unreasonable. Equation 3.4 thus becomes

<pi(ri) = kiri2 + k ’ii4 (3.24)

The advantage of this potential form is that the properties calculated using this extra 

term, such as the structure, high frequency and static dielectric constants remain 

unchanged but it prevents the large electric fields from separating the core and shell. 

Hence, the response of the lattice to charged defects is comparable to the original 

potential.

3.5 Summary

In this chapter, the potential models used in this thesis and the methods by 

which they were derived have been described. Only pairwise interactions were used 

due to the previous success of the potentials. In chapter 4, both empirical and 

non-empirical potentials are used but in subsequent chapters, those obtained by the 

electron gas method only are employed.
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Chapter 4

Alkaline Earth Impurity Segregation In a-Al^O?

4.1 Introduction

In this chapter, an investigation of the segregation of calcium at the basal and 

calcium and magnesium at the {1010} prism surfaces of a-Al20 3 is described. This is 

an important question in ceramic processing because small additions of magnesium 

oxide to a-Al20 3 (141) prevent exaggerated grain growth during sintering and, 

therefore, promote densification. Exaggerated growth occurs when grain boundary 

mobility is much greater than pore mobility and this reduces the strength and 

toughness of the sintered ceramic. However, the role played by magnesium is still 

unclear: it may either segregate to grain boundaries and decrease mobility by a 

solute-drag mechanism (142) or, alternatively, segregate to pore surfaces and 

influence surface diffusivity and pore mobility (143). These theories are further 

complicated by calcium, which has also been observed at grain boundaries (144) and 

free surfaces (145), but does not prevent exaggerated grain growth (146).

The calculated segregation energies are then used to evaluate the variation of 

impurity surface coverage with temperature. The inherent assumption in this approach 

is that the calculated energies, which strictly speaking are potential energies, are valid 

at high temperatures. Thus the variation of thermodynamic properties with 

temperature is investigated.

4.2 The Calculation of Segregation Isotherms

The current method that is used for comparing calculated segregation energies
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with experiment is described in this section. The experimental techniques used for 

surface analysis measure the surface impurity concentrations that are assumed to be 

equilibrated with the bulk as a function of temperature. Heats or enthalpies of 

segregation are then extracted from conventional plots of the log of the surface 

concentration against reciprocal temperature. These are often linear and it is 

commonly assumed that this is indicative of Arrhenius or Langmuir behaviour, 

wherein the surface atomic ratio of the impurity, xs, is related to the bulk ratio, xb, by 

an expression of the form:

xs a  xbexp(-Ah/kT) (4.1)

in which Ah is a coverage independent heat of segregation, T the temperature and k is 

Boltzmann’s constant. This expression is likely to hold for low coverages, but as the 

surface defect concentrations increase defect-defect interactions will play a more 

important role in determining the segregation energies and thus Langmuir behaviour 

will be the exception rather than the rule. This has been confirmed recently by 

atomistic simulations on iso- (147) and aliovalent (148) impurity segregation in 

a-Al20 3. Consequently, a statistical mechanical model, as derived by Mackrodt and 

Tasker (58), is now presented which is similar to equation 4.1, but allows for a 

variation of Ah with coverage. In this way the calculated segregation energies can be 

compared with the experimentally observed surface coverages.

Assume that there are only two types of site: a surface and a bulk site. The 

total free energy (G) of the system is given by:

G = n1bg1b + n^g ,5 + n2bg2b + n2sg2s

- klnQ (4.2)
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where n b and are the numbers of bulk and surface ions of type i with individual 

free energies g b and g^ respectively. Assuming a random distribution of ions, the 

configurational entropy, klnQ, is:

klnQ = klnfCNhl/n^l^hDCN^/n!5! ^ 5!)} (4.3)

where Nb and Ns are the total bulk and surface sites respectively. The conservation 

equations that constrain the system are:

nib + nis = ni (4*4)

n2b + n2s = n2 (4.5)

nib + n2b = Nb (4.6)

nxs + n2s = Ns (4.7)

and by defining the ions of type 1 to represent the impurity, the following equations 

also apply:

ih «  n2 (4.8)

Ns «  Nb (4.9)

n2b ~ Nb (4.10)
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G can now be written as:

G = G ! + G 2 (4.11)

with

Gl = n!S(glS + g2S - glb + g2b) + nlg lb +

Nsg2s + (n2 -N s)g2b (4.12)

and

G2 = -kTlnQ (4.13)

The minimum free energy of the system is found by varying the number of impurities 

at the surface. If it is initially assumed that gjs is independent of n^  then:

dGj/dnj5 = gis - g2s - g!b + g2b (4.14)

and

dG2/dn,s = kTln{(n17n2s)/(n1b/n2b)) (4.15)

By writing:

ni*/n2* = xs (4.16)
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nlh/n2b = xb

gis - g2S = 5gs

gib + g2b = 5gb

8gs - 8gb = Ag

(4.17)

(4.18)

(4.19)

(4.20)

the Arrhenius or Langmuir expression, analogous to equation 4.1, is obtained:

xs = xbexp(-Ag/kT) (4.21)

where 8gs, 8gb and Ag correspond to the bulk and surface substitution free energies

and segregation free energy respectively. Note at this point that the vibrational 

entropy is included in the free energy in addition to the configurational entropy.

Impurity-impurity interactions are included by requiring Ag to be function of 

surface impurity coverage. Equation 4.14 thus becomes:

dG^dnj5 = Ag + n1s(dAg/dn1s) (4.22)

and the modified expression for xs is then:

xs = xbexp{-Ag + xs(xs + l)(dAg/dxs)/kT} (4.23)

By writing Ag in terms of Ah the heat of segregation and As the vibrational entropy of 

segregation:
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Ag = Ah - TAs (4.24)

equation 4.23 can be written as:

xs = xbexp{-As + xs(xs + l)(dAs/dxs)/k}. 

exp {-Ah + xs(xs + l)(dAh/dxs)/kT} (4.25)

from which the slope of ln(xs) against 1 [Y is clearly not that of the Arrhenius 

expression of equation 4.1. At this point it is noted that xs corresponds to the surface 

ratio of impurity to host cations and this is the definition used in AES experiments. 

However, this is an inconvenient definition because monolayer coverage is undefined. 

This problem is overcome by writing equation 4.23 as:

and defining a surface and a bulk concentration Cs and Cb respectively such that:

On substituting 4.27 and 4.28 into 4.26 the surface impurity concentration is given by:

nis/n2s = n1b/n2bexp{(Ag + n1sdAg/dn1s)/kT} (4.26)

Cs = njYfo8! + n2s) (4.27)

Cb = njh/Cnj5 + n2b) = n ^ /n ^ (4.28)

Cs= Cb[exp{(Ag + CsdAg/dCs)/kT} ].

[1 + Cbexp{(Ag + CsdAg/dCs)/kT} ] ~1 (4.29)

and monolayer coverage corresponds to Cs=l. Equation 4.29 compares with the one



58

proposed by McLean (149), except that here Ag is not independent of surface 

coverage. As above, the surface coverage can be written in terms of the enthalpy and 

entropy of segregation:

Cs= Cb[exp(-r/kT)].[l + CbexpK-r/kT)]'1 (4.30)

where

r  = (Ah + CsdAh/dCs) - T(As + CsdAs/dCs) (4.31)

Again this form of isotherm does not necessarily exhibit Langmuir behaviour. 

Experimental plots of log surface concentration against reciprocal temperature are, 

however, often linear. This can be interpreted by writing equation 4.30 as:

In (Cs) = In (Cb) + (As + CsdAs/dCs)/k

- (Ah + CsdAh/dCs)/kT (4.32)

= %- H/kT (4.33)

and solving for H such that:

Ah(Cs) + CsdAh(Cs)/dCs = H (4.34)

The trivial solution is where Ah is independent of Cs. H is also independent of the 

surface concentration when Ah -Cs_1.

The important result is that there are two possible definitions of segregation. 

The first can be viewed as an atomistic description embodied in equation 4.20 and the
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second, H, which is extracted from plots of surface coverage versus reciprocal 

temperature. Neither of these definitions require the segregation enthalpy to be 

independent of coverage and so do not necessarily exhibit Langmuir behaviour. This 

approach is applied to magnesium and calcium segregation in a-Ai203 after a 

discussion on the pure bulk and surface properties.

4.3 Bulk and Surface Structures of a-AI20 3

OC-AI2O3, more commonly known as corundum, has a structure which is based 

on hexagonally close packed layers of oxygen with aluminium ions filling 2/3 of the 

available octahedral sites (see figure 4.1). Thus the oxygen ions are coordinated to 

four aluminiums. This structure has the R3c point group which does not possess full 

hexagonal symmetry because the cation and anion sublattices are distorted along the 

c-direction. This is a consequence of the partial filling of available cation sites.

The corundum structure leads to a potentially large number of low-index and 

potentially low energy surfaces. In this work, the relative stabilities of the five lowest 

index surfaces were considered in order to compare the two potential models that 

were used. The five surfaces are the basal surface and four other surfaces. At right 

angles to the basal surface are the surfaces related to the hexagonal prism. The prism 

face is indexed {1010} and the diagonal prism is indexed {1120}. The primitive unit 

cell is rhombohedral and faces related to this should have the smallest two 

dimensional unit cells. The rhombohedral faces considered are the {1 Ol 1} and 

{ 1012}.

Figure 4.2 shows the stacking sequences of the pure surfaces investigated. The 

basal surface (figure 4.2(a)) is the only surface which terminates in cations. The 

structure, therefore, consists of planes of anions interleaved by puckered planes of 

cations. The surface layer of oxygen ions has aluminium ions above it in one-third of



Figure 4.1: Corundum Structure
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Figure 4.2: The stacking sequences of the five lowest index surfaces 
of a-Al20 3
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the available sites whereas the oxygen ions on other planes are coordinated to four 

aluminiums (47). The two prism planes at right angles to the basal plane are shown in 

figures 4.2(b) and 4.2(c). The {1120} surface is terminated by a plane of anions, 

which are not quite coplanar. The second prism plane ({1010}), consists of cations 

and anions in stoichiometric ratio, although some of the anions deviate slightly from 

the mean plane. The rhombohedral {1012} plane terminates in a layer of anions and is 

shown in figure 4.2(d). The second rhombohedral face {1011}, shown in figure 4.2(e), 

consists of a single column of A120 3 formula units which produces a fully dense 

surface plane of anions.

4.4 Pure Surface Energies

Two potential models (one empirical and one non-empirical) were used in the 

calculations in order to find out how sensitive the results were to the potential model. 

These potentials were derived previously by the methods outlined in Chapter 3.

The non-empirical potential has already been used by Mackrodt (149) to 

calculate the unrelaxed and relaxed surface energies of the five low index surfaces of 

a-Al20 3. The order of decreasing stability before relaxation was found to be:

{1012} > { 1120} > { 1011} >  {0001} > { 1010}

and on relaxation was:

{0001} > {10l 0 } -  {1012} > { 1120} « {10ll}

The unrelaxed energies ranged from 6.46 to 3.63 Jrrr2 and the relaxed energies were 

much lower - between 2.52 and 2.03 Jm'2.
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The order of stability of these surfaces, however, has not been determined 

using the empirical potentials. The unrelaxed and relaxed energies of the five surfaces 

are given in table 4.1 and show that, although the unrelaxed order is identical to the 

non-empirically derived one, the relaxed order of decreasing stabilities is different:

{1012} > {0001} > {1120} > {lOlO} > {1011}

There are three possible reasons for this discrepancy. Firstly, the empirical potentials 

do not include any cation-cation interactions. However, the surface stabilities did not 

change when they were recalculated using non-empirical potentials with no 

cation-cation interactions. Secondly, the core and shell charges for the ions are 

different in the two models. However, the oxygen polarisabilities (which are much 

greater than those of the cations and thus have the greatest effect on relaxation) are 

comparable for the two models. Thirdly, the short range interactions for the empirical 

potentials are only calculated at the perfect lattice ion positions. For other separations 

they are assumed to follow an exponential function of the form given by equation 3.7. 

Therefore, the difference in the calculated ordering in surface stabilities is attributed 

to this approximation in the empirical model. Since the discrepancy in the order of 

stabilities is due to small differences in the calculated surface energies, which are not 

significant when compared to the surface energies, both potentials were used to 

investigate impurity segregation.

The remainder of this chapter deals with the calculations on magnesium and 

calcium segregation at the basal and {1010} prism surfaces of a-Al20 3 because there 

is experimental data with which to compare (150,151). The relaxed structures of these 

pure surfaces using the empirical potentials are shown in figures 4.3 and 4.4. At the 

basal plane only one-third of the available cation sites are filled whereas in the bulk
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Table 4.1: Calculated surface energies (Jm~2) 
of a-Al20 3 using the empirical potential

Surface Unrelaxed
Energy

Relaxed
Energy

{0001} 5.90 2.30

{lolo} 6.52 2.73

{1012} 3.60 2.24

{1120} 4.74 2.50

{1011) 5.79 2.95
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Figure 4.3: Pure basal surface of a-Al20 3 before 
and after relaxation
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Figure 4.4: Pure prism surface of a-Al20 3 before and 
after relaxation
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two-thirds of these sites are occupied (47). The decrease in cation occupancy leads to 

a dramatic contraction of this surface on relaxation. The prism surface, which has a 

stoichiometric stacking sequence, terminates at an oxygen plane. On relaxation, the 

surface expands and the cation planes rumple as the repulsion between oxygen ions is 

relieved. Although the order of stability of the five surfaces is different for the two 

potential models, they both predict that the basal surface is more stable than the prism 

surface (the calculated non-empirical energies are 2.03 Jm"2 and 2.23 Jm'2 for the 

basal and prism surfaces respectively and compare with the empirical results given in 

table 4.1). Also the relaxed structures are similar.

As calcium and magnesium are aliovalent impurities the nature of charge 

compensating defects must be considered. The possible charge compensating defects 

for the acceptor (M=Ca,Mg) in alumina are V0”, M gf and A lf  (note that the 

Kroeger-Vink (152,153) notation is used throughout this thesis to describe the defect 

types. This is summarised in Appendix 4). James (42) has shown that the solution 

energies of magnesium in the bulk with these charge compensating defects only differ 

by 0.6 eV and, therefore, the defect structure will be by no means simple (154). 

However, when defect association is considered, the most stable aggregates seem to 

form with oxygen vacancies (154) and this has been confirmed by precipitation 

studies of MgO in a-Al20 3 (143). Therefore, the charge compensating defects are 

considered to primarily be oxygen vacancies. Segregation energies are then defined as 

the difference in substituting the impurity with charge compensating oxygen 

vacancies in the bulk and at the surface. This is discussed in the following sections.

4.5 Bulk Solution and Binding Energies

The bulk substitution, solution and binding energies of calcium with oxygen 

vacancies, calculated using the empirical and non-empirical potentials, are given in
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Table 4.2: Substitution and isolated solution energies 
of CaA1’ and V0" in CC-AI2O3 using the empirical and 
non-empirical potentials (energies in eV)

Empirical Non-Empirical

CaA1’ 36.4 37.0

V o' 24.6 21.6

Solution
Energy* 5.0 4.7

* per calcium

Table 4.3: Binding and solution energies of 
(CaAi,-Vo"-C!aA1,)x using the empirical and 
non-empirical potentials (energies in eV)

Empirical Non-Empirical

Binding 1.8 1.1
Energy*

Solution 3.2 3.6
Energy*

* per calcium
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tables 4.2 and 4.3. The agreement between the energies calculated by the different 

potentials is favourable and the defect cluster is strongly bound. Magnesium solution 

in the bulk of a-Al20 3 was re-examined using the potential derived by Catlow and 

Lewis (120) and it was found that the solution and binding energies concur with those 

previously calculated by James (42). The calculated solution energies of calcium are 

much higher than those of magnesium because of the greater mismatch in ion size 

between calcium and aluminium (the ionic radii of Al3+, Mg2+ and Ca2+ are 0.45, 

0.68, 1.03 A  respectively (18)). In both cases the high binding energy of the clusters 

reduces the solution energies considerably.

4.6 Surface Binding Energies

The binding energy of the magnesium cluster at the basal plane has already 

been determined by Mackrodt and Tasker (148) and is greater than in the bulk 

because of favourable image charge interactions (see section 2.6). The same result 

was also found for the magnesium cluster at the prism plane which has a binding 

energy of 1.90 eV (per Mg) and compares with the bulk value of 1.20 eV (per Mg). 

The corresponding binding energies for the calcium cluster at the basal plane are 1.94 

and 2.42 eV (per Ca) for the empirical and non-empirical potentials respectively, 

whereas those at the prism plane are 1.10 and 0.83 eV (per Ca) are also high. It should 

be noted, however, that the large ion size mismatch of calcium with aluminium at the 

prism plane serves to lower the binding energy despite the favourable image 

interactions. This is because the surface binding energy is also influenced by the 

difference in relaxation about the isolated and bound impurity. In the case of the 

prism surface, the increase in the binding energy due to the favourable image 

interactions is predicted to be more than compensated for by the decrease in 

relaxation of the bound cluster. It also results in a surface binding energy that is lower
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than in the bulk. Thus, the difference in surface and bulk binding energies is 

controlled by a delicate balance between steric strain due the difference in ion size 

and surface relaxation which includes both electrostatic and short range interactions. 

A similar argument has been used by Mackrodt (147) to account for the unfavourable 

segregation of Y3+ to the basal surface of a-Al20 3.

In view of the high cluster binding energies, the impurities are treated as 

segregating as the neutral cluster (MAj,-V0"-MA1’)x, (M=Ca,Mg). By adopting this 

approach, the interaction of the dipole, that is associated with the cluster with the 

space charge that may form at the surface, need only be considered. Yan et al. (156), 

however, have shown that for low bulk defect concentrations and high temperatures 

this is small and the extent to which it changes the surface charge is negligible. 

Hence, this interaction is also neglected.

4.7 Calcium Segregation to the Basal Plane

Three possible orientations of the calcium cluster at the basal surface were 

considered. These lead to either a configuration parallel to the surface where calcium 

is incorporated in the first cation layer, or a configuration at approximately 45 degrees 

to the surface where calcium ions are incorporated in the first and second or first and 

third cation planes. These cluster orientations are indexed (1,1), (1,2) and (1,3) 

respectively and are shown in figure 4.5. The variation of their segregation energies 

with coverage is shown in figure 4.6 for the empirical potential. The results indicate 

that at thermodynamic equilibrium the defect cluster will segregate and give the 

orientation parallel to the surface at all coverages considered and that it does not 

exhibit Langmuir behaviour. As the defect concentration is increased from zero to one 

quarter coverage, the segregation energy becomes less exothermic by 0.25 eV. 

Around 33% coverage there is evidence for the formation of a stable phase of



Figure 4.5: Surface configurations of the (CaA1’-V0-CaA1’) at the basal 

surface of a-Al20 3
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Figure 4.6: Calculated segregation energy of calcium 
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composition CaAl20 4. There is also a minimum at 100% coverage corresponding to a 

two dimensional phase of CaO. From the phase diagram (157) between CaO and 

A120 3, compounds of formula CaAl120 19, CaAl40 7, and Ca3Al20 6, as well as 

CaAl20 4 are stable. Apart from CaAl20 4, surfaces with these compositions require 

calculations that exceed the available computer resources and therefore direct 

comparison is currently not possible.

The segregation isotherm of the (1,1) configuration, calculated using the 

non-empirical potential, is compared to that of the empirical potential in figure 4.7. 

Although the quantitative agreement in the segregation energies is poor, qualitatively 

the behaviour is comparable. The difference in the segregation energy at a given 

coverage is 1.2 eV (per Ca) less for the non-empirical potential of which 0.2 eV is due 

to the difference in bulk substitution energies. Segregation is strongly favoured at all 

coverages. The difference in the segregation energies can be attributed to the greater 

relaxation of the pure surface using the non-empirical potential (the difference in 

relaxed and unrelaxed pure surface energies is 3.92 Jm"2 which compares with 3.60 

Jm"2 for the empirical potential). Incorporation of impurity ions with a large mismatch 

in ion size at the basal surface is predicted to have a greater destabilising influence on 

surface stability using non-empirical potentials. To check if this mismatch due to the 

lack of cation-cation interactions in the empirical potential the non-empirical values 

were recalculated without these interactions. The results, however, were the same and 

therefore it was concluded that, as for the pure surface calculations (in section 4.4), 

the difference is due to the different methods by which the short range interactions 

were determined.

These results are in agreement with the calculations of Davies et al. (158) who 

found that magnesium segregates to give the (1,1) orientation parallel to the basal 

plane of Cr20 3, although in this case Langmuir behaviour was exhibited at all 

coverages considered. Mackrodt and Tasker (148) showed that magnesium also
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segregates to the basal surface of (X-AI2O3 but the (1,4) cluster orientation is preferred. 

They compared their results with the experiments of Baik et al. (36) who determined a 

segregation enthalpy of -1.51 eV from a plot of log (surface coverage) against 

reciprocal temperature which is in good agreement with the theoretical result of -1.64 

eV. Mackrodt and Tasker also attributed the surface reconstruction observed 

experimentally by LEED to be due to the formation of a two dimensional ordered 

spinel phase.

The experimental evidence for calcium segregation to this surface is unclear. 

Baik et al. (36) investigated magnesium segregation to the (0001) surface of sapphire 

and found that the surface magnesium distribution was uneven. In areas where 

magnesium was absent, calcium was present in high concentrations. They suggested 

that this indicated some sort of repulsion between the two cations and that calcium 

enrichment was due to small surface precipitates. In contrast, Baik and White (150) 

found no evidence for calcium segregation to the basal plane of a single crystal doped 

with approximately 40 ppm of calcium. The absence of calcium segregation was 

attributed to kinetic factors (150,159). Thus, the apparent mismatch between theory 

and experiment would seem to arise from kinetic factors because thermodynamic 

equilibrium was not attained in the experiments.

Within the confines of the models used in this thesis, the kinetics of diffusion 

can be investigated by calculating the activation energy of the migration of Ca2+ ions 

between two adjacent aluminium vacancies. The two vacancies were chosen to be 

perpendicular, parallel and at 45 degrees to the <0001> direction in the bulk. The 

activation energies, calculated using the empirical potential, are given in table 4.4 and 

show that migration is isotropic. Indirect support for these results comes from two 

sources. Firstly, Ando (160) has determined an experimental activation energy for 

Mg2+ ions in a-Al20 3 as 2.4 ± 0.3 eV at low impurity concentrations. This activation 

energy is lower than that reported here for Ca2+ but this is to be expected because the
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Table 4.4: Calcium activation energies (eV)

Migration Pathway Activation Energy

Parallel to c-axis* 3.1

Perpendicular to c-axis 3.4

At 45 degrees to c-axis 3.3

* the c-axis is perpendicular to the basal plane
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lattice strain arising from Ca2+ is much greater than that for Mg2+ in a-Al20 3 (161). 

Magnesium would, therefore, successfully compete for surface cation sites which 

would account for the ’repulsion’ observed by Baik et al. Secondly, Stubican and 

Osenbach (162) showed that 51Cr lattice diffusion in a-Al20 3 is isotropic which is in 

accord with the results presented in table 4.4. Thus, anisotropic bulk diffusion cannot 

account for the lack of calcium segregation at the basal surface.

The migration behaviour of ions in the sub-surface region will not necessarily 

be the same as in the bulk. Therefore, point defect formation energies were also 

calculated using the empirical potential for Vai” \  M g^’ and CaA1’ as a function of 

depth in the sub-surface region of the basal plane. The results, given in figure 4.8, 

show that the cation vacancy energy varies with distance from the surface and 

approaches the bulk value around the 7th cation plane (approximately 6 A ) below the 

surface. This is expected in view of the large relaxations seen in figure 4.3 which lead 

to enhanced stability of vacancy sites on the 4th and 5th cation planes. Also shown in 

figure 4.8 are MgA1’ and C a^ ’ energies with depth which show a maximum around 

the 3rd and 4th cation planes. The difference in the energy between the 4th and 5th 

planes are 0.50 eV for MgA1’ and 1.40 eV for CaA1’. Substitution of calcium at the 2nd 

cation plane is unstable and the calcium ion migrates directly to the surface. Thus, 

enrichment of the surface by magnesium and the sub-surface by calcium might be 

expected as the energy barriers are markedly different. It remains to be seen, however, 

whether such a subtle difference can be detected by experiment.

4.8 Calcium and Magnesium Segregation to the Prism Plane

Both magnesium and calcium segregation to the prism plane of a-Al20 3 were 

investigated. Only one cluster orientation was chosen with all the impurities lying in 

the first cation plane. The excessive computer cpu time taken to relax this surface
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precluded further investigation of defect cluster orientations. In addition, relaxation o f . 

the defect free surface produced a rumpled cation plane in which a number of 

different possible cluster orientations were possible, the most favourable of which 

involved nearest neighbour ion sites.

The calculated segregation energies, using empirical potentials, as a function 

of magnesium defect cluster concentration are given in figure 4.9 and compared to 

those of calcium. The segregation energy for the magnesium cluster becomes more 

exothermic by approximately 0.3 eV between zero and one quarter coverage. At 

coverages greater than 25% the segregation energy rises by 0.3 eV but is still 

negative. Above 75% surface coverage there is some evidence for the formation of a 

two dimensional phase of MgO. Calcium segregation at this surface shows similar 

behaviour, but is much more exothermic - as might be predicted from the larger 

mismatch in ion size for Ca2+ and Al3+, and hence larger cluster size. No evidence for 

the formation of a second phase of composition CaO is observed which is probably 

because the distances between the cation sites at this surface are smaller than at the 

basal plane. The relaxed structure of this surface is thus much more tightly packed 

and less able to accommodate the larger CaO phase. Stable phases are, however, seen 

for surface coverages of approximately 25%, but as before the exact minimum cannot 

be located because of the small number of points that could be calculated. 

Comparison with non-empirical potentials for calcium show much better quantitative 

agreement at this surface as seen in figure 4.10.

4.9 Segregation Isotherms

An important aim of this work is to establish the reliability (or otherwise) of 

these techniques. This can be done by comparing the calculated surface coverage with 

that determined by experiment. The above calculations give the variation of the
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segregation potential energy at 0 K with coverage. To calculate surface defect 

concentrations at elevated temperatures the following equation is used:

Cs = -------------------- !----------------------  (4.35)

1 + (CbAX'exfjph + CŜ  / |f l) ]

where A, the pre-exponential factor, is related to the entropy of segregation via:

A =exp {As/k} (4.36)

Note that the other variables have the meanings given in section 4.2. Thus, the 

enthalpy, Ah, and the entropy, As, of segregation are required.

Here, Ah is identified with the potential energies calculated above and the 

justification for this is as follows. The relationship between the formation enthalpy at 

constant pressure hp, and the formation internal energy at constant volume uv is (163):

hp = uv - TPPQ(duv/dQ)T (4.37)

where pP is the volume expansivity of the bulk material and Q  is the defect formation 

volume. Assuming (163) the change in the internal energy, Auv due to the increase in 

volume is proportional to corresponding increase in temperature then:

Auv = (du7dQ)[Q(T) - Q(0)] * TPpO(duv/dn) (4.38)

Thus the change in the internal energy due to the increase in volume compensates for 

the difference between hp and uv. A similar argument (164) can be applied to
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formation enthalpies at the surface, although in this case the internal energy is 

calculated at constant area. As the difference in the internal energy of the defective 

and pure lattice is equal to the sum of the difference in the zero point energy (which is 

negligible) and the difference in the potential energy the identification of Ah with the 

potential energy would seem to be entirely satisfactory.

From equation 4.35, the change in vibrational entropy of segregation is also 

required. If it is assumed that this term is small and does not vary appreciably with 

either surface coverage or temperature, then As can be estimated from experiment. 

This is now done for magnesium and calcium segregation at the prism surface.

The plots of surface coverage against temperature for calcium and magnesium 

at the prism plane are given in figures 4.11 and 4.12. The pre-exponential factor, A 

for magnesium segregation was taken as 1.6 x 10'2, which corresponds to a 

segregation vibrational entropy of 3.55 x 10"4 eVK'1. The theoretical plot compares 

favourably with experiment (151), but as the plot is not linear, it is difficult to 

determine a value of H given by equation 4.34 which is independent of temperature. It 

is more appropriate to take the atomistic definition (equation 4.20) of the segregation 

enthalpy which can be found from figure 4.9.

For calcium segregation, the vibrational entropy was taken to be 1.24 x 10‘3 

eVK' 1 and was extrapolated from the results of Mukhopadhyay et al. (151). The 

results are compared with those of Mukhopadhyay et al. and Baik and White (150) in 

figure 4.12. The qualitative agreement is again good and the variation of the logarithm 

of surface coverage with temperature is approximately linear. In this case the value of 

H is determined to be about -1.2 eV (per Ca). Note that this is markedly different 

from the atomistic definition of segregation which does vary with coverage (see 

section 4.2).

In the above account of segregation, the effects of temperature have been
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incorporated by making various approximations. Comparison with experiment shows 

that these are indeed reasonable, albeit for the systems investigated. It would, 

however, be useful to relax these approximations and calculate the effects of 

temperature by including the vibrational properties of the lattice explicitly. 

Segregation isotherms could then be predicted without fitting to the experimental 

results. Accordingly, in the next section, results from a preliminary study on the 

thermodynamic properties of the pure and defective basal surface of OC-AI2O3 at 

elevated temperatures are presented. From these results the segregation free energy of 

calcium at the basal surface of a-Al20 3 is calculated.

4.10 Segregation Free Energy of Calcium at the Basal Plane

In the remainder of this chapter the calculation of the segregation free energy 

of calcium at the basal surface, using lattice dynamics (see section 2.7), is described. 

The simulations were performed with the empirical potential and the key results 

compared with those calculated using the non-empirical potential. The reliability of 

the calculations was also investigated by recalculating the thermodynamic properties 

at 100 and 1000 K using more reciprocal lattice points. The sampling points that were 

used are given in chapter 2.

Four calculations are required to determine the segregation free energy for a 

given lattice parameter or temperature. They are:

a. The free energy of the pure surface;

b. The free energy of the defective surface;

c. The free energy of the pure bulk;

d. The free energy of the defective bulk.

The segregation free energy is obtained from the difference in substituting the defect 

at the surface and in the bulk.



87

Both the harmonic and quasi-harmonic approximation were used to calculate 

the segregation free energy. In the harmonic approximation the thermodynamic 

properties are found for the 0 K minimum energy structure and, therefore, lattice 

expansion is neglected. In contrast, in the quasi-harmonic approximation the 

thermodynamic properties are calculated for the equilibrated structure at the given 

temperature. The equilibrated structure is found by minimising the kinetic pressure 

with respect to the volume of the lattice.

4.10.1 Lattice Expansion of a-Al20 3

The volume and linear expansion coefficients of a-Al20 3 were calculated 

using the quasi-harmonic approximation. The volume expansion coefficient (ay) for a 

change in volume (VT--VT-) from temperatures T to T is given by:

VT„ = v T, [ l + avAT ]

where

AT = T” -T ’ andT” > T ’

An analogous equation gives the change in lattice parameter with temperature.

The supercell that was used to calculate the change in lattice parameter with 

temperature contained sixteen formula units of A120 3 (80 ions). A supercell was 

employed so that the final basis of coordinates and lattice vectors could be used in the 

surface calculations. The other advantage of using large unit cells is that the number 

of sampling points in reciprocal space is less than that required for a primitive unit 

cell. This is because of the folding back of the phonon dispersion curve towards the
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Brillouin zone centre (165). A linear expansion coefficient was also calculated from 

the cube root of the volume. As a-Al20 3 expands anisotropically, the latter should 

only be compared with polycrystalline experimental data.

Over the temperature range considered, 100 to 1000 K, the volume and linear 

expansion coefficients, calculated using one reciprocal lattice point, are 1.04 x 10"5 

K' 1 and 3.47 x 10"6 K_1 for the empirical potential and 1.18 x 10'5 K'1 and 3.91 x lO'6 

K*1 for the non-empirical potentials. The agreement between the two potential models 

is good. The linear expansion coefficients were also calculated for the empirical 

model over the temperature ranges 100-500 K and 500-1000 K. They are 2.39 x 10"6 

K' 1 and 4.33 x 10"6 K '1. These compare with experimental linear expansion 

coefficients of 2.7 x 10'6 K"1, 6.8 x 10‘6 K*1, 8.3 x 10'6 K"1 and 8.33 x 10"6 K-1 for the 

temperature ranges 123 to 293, 293 to 533, 533 to 1253 and 293 to 1253 K 

respectively (166).

The volume coefficient of expansion at 100 and 1000 K was recalculated for 

both potentials using 8 reciprocal lattice points. The coefficents over the temperature 

range 100 to 1000 K were 3.46 x 10'6 K' 1 and 3.93 x 10"6 K' 1 for the empirical and 

non-empirical potentials. A further calculation with 27 points was precluded because 

of the excessive computer memory required. However, the predicted expansions using 

1 and 8 reciprocal lattice points were in good agreement and, therefore, it was 

concluded that the calculated thermodynamic properties had converged. There are two 

further reasons as to why the experimentally and theoretically determined expansion 

coefficients do not agree. The first is that the potential models are inaccurate. The 

agreement between the two potentials and their success in modelling crystal 

properties (see for example reference (167)) would seem to suggest that this is not a 

major source of error. The other, and more likely, reason is due to deficiencies in the 

quasi-harmonic approximation. These may arise because the lattice energy is only 

expanded to second order in the lattice displacements (section 2.3) and higher order
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terms are neglected. This is reasonable for lattice vibrations which do not sample 

large volumes of reciprocal lattice space. At high temperatures ionic displacements 

due to vibrations are much larger and anharmonic terms, which tend to decrease the 

vibrational frequencies of the phonons will become important. Thus at a given 

temperature more phonon modes will be occupied than are predicted by the 

quasi-harmonic approximation and so the vibrational contribution to the free energy 

of the crystal is greater (168). The predicted expansion coefficients will then be less 

than those observed experimentally and this is what is found here.

4.10.2 Basal Surface Free Energy

The surface calculations were performed on two dimensional slabs which 

were separated by three lattice units. The slabs themselves consisted of 80 ions with 

24 planes stacked in the <0001> direction. The top and bottom of the slabs thus 

represented free basal surfaces. The separation and number of planes in the stack was 

chosen so that the surface energy had converged. The independence of the two 

surfaces was also ensured by checking that the two longest wavelength acoustic 

phonons or Rayleigh modes were approximately degenerate (56).

The change in the surface free energy with temperature, calculated using one 

point in reciprocal space for the empirical and non-empirical potentials, is given in 

table 4.5. Both results for the lattice parameter at 0 K (harmonic approximation) and 

those for the lattice parameter determined by the quasi-harmonic approximation are 

included in this table. The main difference between results from the two potentials is 

that the calculated free energies differ by approximately 0.3 Jm'2 and this is consistent 

with the difference between the potential energy calculations. For the empirical 

potentials, the surface free energy decreases approximately linearly with temperature 

and is lower for the quasi-harmonic approximation. The surface free energy was
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Table 4.5(a): Calculated basal surface free energies (Jm-2) of a-Al20 3

Empirical Non-empirical
Temperature

(K)*
Harmonic Quasi-

Harmonic
Harmonic Quasi-

Harmonic

100 2.37 2.36 2.01 1.99

500 2.34 2.32

1000 2.30 2.27 1.99 1.94

1500 2.26 2.24

2000 2.23 2.20

Table 4.5(b): Calculated basal surface free energies (Jm-2) of a-Al20 3

Empirical Non-empirical
Temperature

(K)
Harmonic Quasi-

Harmonic
Harmonic Quasi-

Harmonic

100* 2.37 2.36 2.01 1.99

100** 2.37 2.35 2.01 1.98

1000* 2.30 2.27 1.99 1.94

1000** 2.29 2.26 1.98 1.93

* 1 k-point used for both surface and bulk

**8 k-points used for the bulk and 4 k-points for the surface
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recalculated using more sampling points in reciprocal space at 100 and 1000 K and 

these results are compared with those calculated with one reciprocal lattice point in 

table 4.5. It can be seen that the calculations are indeed consistent and it is concluded 

that the surface thermodynamic properties have converged. Note that only 4 points 

were used for the surface calculation in comparison with 8 for the bulk. This is 

because slabs have a lower periodicity than the bulk and hence only points in the first 

two-dimensional rather than the three-dimensional Brillouin zone need to be sampled 

(169).

The surface entropies for the empirical and non-empirical models, determined 

from the change in the free energy (harmonic) with temperature are 6 x 10'5 and 3 x 

10'5 Jm'2K_1 respectively. These compare favourably with calculated values for two 

NiO grain boundaries of 6.3 x 10'5 and 15 xlO'5 Jm^K'1 (61). An experimentally 

determined surface energy of a polycrystalline sample of alumina at 2123 K is 0.9 

Jm"2 (153). If it is assumed that a polycrystalline sample is composed of equal areas 

of each of the five low index surfaces investigated above, then at absolute zero its 

surface energy will be 2.55 or 2.31 Jm'2 for the empirical and non-empirical potentials 

respectively. The surface energy at 2123 K can then be estimated by noting that the 

decrease in the basal surface free energy determined by the quasi-harmonic 

approximation is either 9 x 10'5 or 6 x 10"5 Jm"2K_1. Thus the predicted surface 

energies at 2123 K are 2.36 and 2.18 Jm'2. These are much higher than the 

experimental values and this is to be expected if anharmonic terms contribute 

significantly to the lattice energy.

The surface structure of corundum has been studied by LEED (170) and the 

observed ( lx l)  pattern corresponds to the structure used in the zero Kelvin 

determination of the surface energy. When this surface was heated more complex 

structures related to supercells formed. Similar behaviour has been observed for the 

(0001) surface of a-Fe203 (171). The larger cells relate to either changes in surface
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stoichiometry or may indicate that the ( lx l)  cell is metastable at higher temperatures. 

Mackrodt and Tasker (148) have attributed such a transformation on heating to the 

segregation of magnesium at this surface. Indirect support for this is obtained from 

the calculations reported here on the pure surface because no imaginary vibrational 

frequencies were found over the temperature range investigated. Imaginary modes 

correspond to the development of soft phonons in the vibrational spectrum and these 

have been invoked by Trullinger and Cunningham (172) to explain surface 

reconstruction. However, it should be noted that only one reciprocal lattice point is 

used to represent the phonon frequencies over the temperature range of 100 to 2000 

K. Phonon softening may still occur at other k-points. If impurities do cause the 

change in the LEED pattern then this could also account for the low experimentally 

determined surface energy. As defects segregate to the surface, then the surface 

energy decreases (173). Note that the surface energies that were used to predict the 

surface energy of the polycrystalline material at elevated temperatures did not include 

any impurities. Also, the possibility of oxygen evaporation at the surface was not 

investigated which has been observed by French and Somoijai (33).

4.10.3 Surface Substitution Free Energies

For the calculation of the defective surface, monolayer coverage was assumed. 

This was partly because the potential energy calculations indicated that a stable phase 

was formed around this composition. The primary reason, however, was that lower 

surface coverages required bigger unit cells which were computationally prohibitive. 

The orientation of the defect cluster considered was the (1,1) configuration in accord 

with the calculations outlined in section 4.7 and was substituted into one of the 

surfaces of the slabs.

The surface substitution free energy is calculated from the difference between
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the defective and pure surface energy. The variation of the substitution free energy 

with temperature for both potentials using the harmonic and quasi-harmonic 

approximation is given in table 4.6. As with the surface free energies these do not 

vary appreciably with temperature, although they are slightly lower for the 

quasi-harmonic approximation. The dependence of the free energy on the number of 

k-points was checked for the empirical potential and the results are given in table 4.6. 

As before, there is little difference between those calculated for 1 and 4 k-points. The 

entropy of surface substitution is determined from the slope of the free energy versus 

temperature of the harmonic approximation to be 2.15 x 10"4 eVK'1 for the empirical 

and 2.07 x 10^ eVK'1 for the non-empirical potential. When compared with that for 

50% calcium substitution at the {100} surface of MgO which was found to be 5.17 x 

10'6 eVK' 1 (164) this result is high. Thus, the strain induced at the basal surface of 

a-Al20 3 when it is doped with the calcium-oxygen vacancy cluster is much greater 

than that when magnesium is substituted for by calcium at the {001} surface of MgO. 

This is to be expected because of the larger size of the cluster. However, the 

substitution entropy is still small when compared to the potential energy of 

substitution, lending support to the argument used in section 4.9 where it was 

assumed that the contribution of this term to the segregation free energy was small.

4.10.4 Bulk Substitution Free Energies

When calculating bulk substitution free energies the free energy of 

substituting the defect cluster at infinite dilution is required. Harding (174) has 

developed such an approach, based on the large crystallite method, for the calculation 

of the entropy of substitution of point defects. This can be combined with potential 

energies of substitution to give the Helmholtz free energy of the 0 K structure. 

However, the thermodynamic properties are required at the lattice volume appropriate
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Table 4.6(a): Substitution free energies of (CaA1’-V0 "-CaA1’) 
at the basal surface of a-Al20 3 using 1 reciprocal lattice point 
(energies in eV)

Empirical Non-empirical
Temperature

(K)
Harmonic Quasi-

Harmonic
Harmonic Quasi-

Harmonic

100 86.14 86.13 87.73 87.71

500 86.04 86.02

1000 85.94 85.92 87.54 87.49

1500 85.91 85.87

2000 85.91 85.37

Table 4.6(b): A comparison of the substituion free energies 

of (C a^ '-V o '-C a^’) at the basal surface using 1 and 4 reciprocal 
lattice points (energies in eV)

Empirical Non-empirical
Temperature

(K)
Harmonic Quasi-

Harmonic
Harmonic Quasi-

Harmonic

100* 86.14 86.13 87.73 87.71

100** 86.14 86.13 87.73 87.71

1000* 85.94 85.92 87.54 87.49

1000** 85.93 85.91 87.53 87.47

* 1 k-point

**4 k-points
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for the gwen temperature. Although these can be calculated from the large crystallite 

method by suitable thermodynamic identities (175), the supercell approach was used 

in this thesis. This has previously been used to calculate a range of bulk defect 

thermodynamic properties (see for example Allan et al. (176) and references therein). 

Only finite defect concentrations can be considered in the supercell approach and, 

therefore, to reduce possible defect-defect interactions a supercell which contained 

the same number of ions as the surface calculations (80 ions) was considered, but with 

suitably modified unit cell lengths. This choice not only ensured that the defect-defect 

interactions were minimised but also allowed for a check on the convergence of the 

results. The formula of the unit cell incorporating the defect was Ca2Al3o0 47.

The change in the bulk substitution free energy with temperature using the 

empirical potentials is given in table 4.7. Between 100 and 1000 K the free energy of 

substitution decreases for the harmonic approximation. This corresponds to a positive 

entropy of substitution (see table 4.7) and compares with the positive value for 

substitution of calcium in the bulk of MgO calculated by Masri et al. (164). At higher 

temperatures, however, the substitution free energy increases and this corresponds to 

a negative substitution entropy (see table 4.7). The free energy of substitution using 

the quasi-harmonic approximation decreases with an increase in temperature. The 

decrease in the free energy is dominated by the decrease in the potential energy with 

increasing volume. The calculated entropies for both the harmonic and 

quasi-harmonic approximation are given in table 4.7 and decrease with increasing 

temperature. The free energy and entropy at 100 K and 1000 K, calculated using 8 

points in reciprocal space are compared with those using one reciprocal point in table 

4.8. The substitution entropies at 100 K calculated with 1 and 8 reciprocal lattice 

points differ by 6.6 x 10*5 eVK'1 (or 27%). The difference in the substitution free 

energies is negligible because the entropy contribution is small at this temperature. At 

1000 K the entropies and free energies are identical and it was concluded that the
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Table 4.7: Calculated substitution free energies and entropies of 
of (CaA1*-V0"-CaA1,)x in the bulk of a-Al20 3

Free energy (eV) Entropy (lO^eVK'1)

Temjjerature Harmonic Quasi-
Harmonic

Harmonic Quasi-
Harmonic

100 93.42 93.23 1.80 1.80

500 93.33 93.05 1.25 1.11

1000 93.32 92.81 -0.53 -0.84

1500 93.37 92.64 -1.58 -0.75

2000 93.47 92.48 -2.33 -3.04

Table 4.8: Calculated solution free energies and entropies 
of (C a^’-Vo" -CaAi’)x in the bulk of a-Al2C>3 using the 
empirical potential (energies in eV)

Temperature
(K)

Free energy (eV)

Harmonic Quasi- 
Harmonic

Entropy (lO^eVK'1)

Harmonic Quasi- 
Harmonic

100* 93.42 93.23 1.80 1.80

100** 93.41 93.23 2.48 2.48

1000* 93.32 92.81 -0.53 -0.84

1000** 93.32 92.82 -0.53 -0.84

* 1 k-point

**8 k-points
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thermodynamic properties had converged.

The calculated bulk substitution free energies and entropies, using the 

non-empirical potential, at 100 and 1000 K are given in table 4.9. Within the 

harmonic approximation, the free energy of substitution using 1 reciprocal lattice 

point is greater at 1000 K (by 0.15 eV) than that at 100 K. This is because the entropy 

at 1000 K is negative (see table 4.9). In contrast, the free energy is lower (by 0.30 eV) 

than that at 100 K using the quasi-harmonic result. This is because the vibrational 

contribution to the free energy is small when compared to the potential energy. The 

convergence of these calculations is demonstrated by the agreement of the results for 

1 and 8 reciprocal lattice points. Also, the results for the two potential models are 

comparable.

At the beginning of this section, it was noted that only finite concentrations 

can be considered within the supercell approach. The influence of impurity-impurity 

interactions was investigated by increasing the size of the unit cell so that the unit cell 

formula was Ca2Al62095 (159 ions). The calculated substitution free energy and 

entropy, using the quasi-harmonic approximation and 1 reciprocal lattice point, is 

92.88 eV and -1.14 x 10"4 eVK'1 respectively and compare with the values calculated 

for the smaller impure unit cell (79 ions) of 92.92 eV and -0.65 x 10"4 eVK-1. A 

further increase in either the unit cell size or the number of reciprocal lattice points is 

not possible at present because of restrictive computer resources. The results between 

the two unit cells are in good agreement and it was concluded that the 

impurity-impurity interactions are negligible.

4.10.5 Segregation Free Energy

The change in the segregation free energy of calcium to the basal surface of 

a-Al20 3, calculated using empirical potentials, is given in figure 4.13. The
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Table 4.9: Calculated solution free energies and entropies 
of (C a^’-Vo‘ -Ca^ ’)51 in the bulk of a-Al20 3 using the 
non-empirical potential (energies in eV)

Free energy (eV) Entropy (lO^eVK1)

Temperature
(K)

Harmonic Quasi-
Harmonic

Harmonic Quasi-
Harmonic

100* 92.22 92.05 0.72 0.71

100** 92.22 92.05 0.75 0.73

1000* 92.38 91.75 -3.64 -4.06

1000** 92.38 91.75 -3.64 -4.04

* 1 k-point

**8 k-points
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Figure 4.13: Calculated segregation free energy of 

(C a ^ -V o  -CaA1’) against temperature using the 
empirical potential, (a) harmonic approximation 
and (b) quasi-harmonic approximation 
((a) and (b) are calculated for 100% surface coverage)
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segregation free energy calculated by the harmonic approximation becomes more 

negative with increasing temperature. This corresponds to a positive entropy of 

segregation, although the calculated values in table 4.10 show considerable scatter. 

Masri et al. (164) calculated a negative segregation entropy for Ca at the {001} 

surface of MgO of -2.07 x 10-5 eVK' 1 at 1000 K and this difference was mainly due to 

the loss in bulk entropy.

The free energies of segregation, calculated using the quasi-harmonic 

approximation and the empirical potential, are also given in figure 4.13. The free 

energy of segregation decreases with temperature. This is because as the lattice 

expands the potential energy component of the segregation free energy becomes less 

exothermic. The entropy change is still positive for temperatures above 100 K but this 

is masked by the effect of the segregation potential energy. The segregation entropies 

are compared with those using the harmonic approximation in table 4.10.

As in the previous sections, the convergence of the calculations was tested by 

repeating the calculations with 4 (surface calculations) and 8 (bulk calculations) 

points in reciprocal space. These are given in table 4.10 and show the same trend as 

the results using one reciprocal lattice point.

The segregation free energy and the segregation entropy were also calculated 

from the calculations on the larger bulk slab (the unit cell of this slab contained 159 

ions - Ca2Al62095). The segregation free energy and entropy at 1000K are -6.96 

eV(cluster)"1 and 2.33 x 10-4 eVK'1 (cluster)-1 and compare with -6.89 eV(cluster)-1 

and 2.03 x 104 eVK-1 (cluster)-1 for the Ca2Al30O47 slab. The segregation entropy is 

also positive and compares favourably with the calculations on the smaller bulk slab 

(80 ions).

The results for the non-empirical potential for the quasi-harmonic and the 

harmonic approximation are given in table 4.11. They show the same trends as 

observed for the empirical potential: the potential segregation energy dominates the
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Table 4.10: Calculated segregation entropies of (CaA1'-V0 ' - A i ’ ) x 

at the basal surface of oc-A120 3 using the empirical potentials

Entropy (lO^eVK’1)* Entropy (lO^eVK4 )**

Temperature
(K)

Harmonic Quasi-
Harmonic

Harmonic Quasi- 
Harmonic

100 -0.33 -0.33 -0.89 -0.88

500 1.22 1.36

1000 0.68 2.03 1.84 2.13 •

1500 5.34 0.51

2000 1.89 2.55

Table 4.11: Calculated segregation free energies and entropies 
of (CaAi,-V0"-CaA1,)x at the basal surface of a-Al20 3 using the 
non-empirical potentials (values quoted are per calcium)

Free energy (eV) Entropy (lO ^eVK1)

Temperature
(K)

Harmonic Quasi-
Harmonic

Harmonic Quasi-
Harmonic

100* -2.24 -2.17 1.29 1.32

100** -2.25 -2.18 1.31 1.15

1000* -2.41 -2.13 4.53 4.88

1000** -2.43 -2.13 4.75 4.89

* calculated using 1 k-point for surface and bulk calculation

** calculated using 4 and 8 k-points for the surface and bulk 
calculation respectively
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free energy of segregation and that at 1000 K the segregation entropy is positive.

The result of a positive entropy is the reverse of what might be expected (177) 

because at the surface the relaxation of strain should be greater than in the bulk and 

therefore the shift in the vibrational properties should be less. Indeed, Masri et al. 

(164) have shown that the entropy of segregation for calcium at the (001) surface of 

MgO is negative. The enthalpy of segregation is also negative and this implies that 

the strain at the surface is lower than in the bulk. Mackrodt (147) found that the 

segregation enthalpy of yttrium, which has a comparable ion size to that of calcium 

(the ionic radii of Ca2+ and Y3+ are 1.14 and 1.04 respectively (155)), is 

approximately zero and therefore the strain at the surface is similar to that in the bulk. 

In contrast, the enthalpy of segregation of an isolated Ca2+ ion at the basal surface is 

negative (-2.57 eV and -1.00 eV for the empirical and non-empirical potentials 

respectively) and this implies that for aliovalent impurities the relief of strain is not 

the only factor influencing segregation (infact the cation site potential (178) and 

image charge interactions are also important (see section 2.6)). Aliovalent 

segregation is also complicated by the nature of the charge compensating defects and, 

therefore, the segregation entropy of the cluster to the basal surface need not be 

negative.

The segregation free energy and entropy have been calculated at constant 

lattice parameter. To be of use to experiment these must be converted to constant 

pressure quantities (179). The entropy at constant pressure is obtained from:

Sp = -(dgp/9T)p

and since gp « fv (180), the entropy is given by the slope of the quasi-harmonic 

segregation plot. This is negative and is to be expected because the decrease in the 

potential energy as the lattice expands dominates the change in free energy. The
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calculated values are -2.6 x 10"6 eVK'1 and -4.4 x 10'5 eVK_1for the empirical and 

non-empirical potential respectively.

4.11 Summary

In this chapter, calculations on the segregation of magnesium and calcium to 

the prism and calcium to the basal surfaces of a-Al20 3 were discussed. The results for 

the prism surface show good agreement with available experimental data although 

various approximations were made. These were firstly that there are only two sites, 

one bulk and one surface site. Secondly, that impurity clusters need only be 

considered and that they segregate at essentially planar, nondefective surfaces to form 

ordered structures. At low coverages both these assumptions may be unrepresentative 

of real systems, because disordered segregation at steps, ledges and other surface 

irregularities (181) might well predominate. The last assumption was that the 

potential energy of segregation at 0 K is the major contributor to the free energy at 

elevated temperatures.

The segregation behaviour of calcium to the basal surface is qualitatively 

similar for both potentials, although the quantitative comparison is poor. When 

compared to available experimental data for calcium segregation at this surface, the 

agreement is at best inconclusive and at worst in variance to the results presented 

here. This difference, however, can probably be attributed to the lack of 

thermodynamic equilibration in the experiments and not an error in the simulations.

Atomistic simulation was extended to explicitly include lattice expansion and 

hence the effects of temperature in non-cubic oxides using lattice dynamics. Two 

potentials were used to check the reliability of the results. An important point that has 

emerged from these calculations is that anharmonic contributions to the free energy 

are important for high temperature studies on a-Al20 3 i.e. the mismatch between
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theory and experiment can probably be accounted for because the expansion of the 

lattice energy is truncated to second order. Also, the results show that the major 

contributor to the surface and bulk impurity substitution energies is the potential 

energy. Thus, the assumption that the entropy contribution to these energies is small is 

reasonable. This is particularly important because this assumption has been implicit in 

all previous simulations of surface segregation in corundum structured oxides, 

including those at the prism surface. Indeed, it is used in the following two chapters 

where the pure and defect surface properties of La2Cu04 and Nd2Cu04 are discussed.
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Chapter 5

The Pure Surfaces of T-La?C u04 and T,-Nd7C u04

5.1 Introduction

Calculations on the structures and stabilities of the surfaces of tetragonal 

Nd2Cu04 and La2Cu04 using the MIDAS (82) code developed by Tasker are 

discussed in this chapter. The potentials that were used were derived by 

semi-empirical methods and are described in chapter 3. Calculations on surface 

defect properties are discussed in chapter 6.

Stoichiometric La2Cu04 and Nd2Cu04 are antiferromagnetic semi-conductors 

(182). When they are doped they can be rendered p-type (11) and n-type (28,29) 

superconductors respectively. The superconducting current is carried by the 

2-dimensional Cu02 planes (183) in these materials. Their layer structure leads to a 

high degree of anisotropy in their electrical properties (184) perpendicular and 

parallel to the Cu02 planes e.g. in the undoped materials the resistivity is much higher 

perpendicular to the Cu02 planes than parallel to them. Interfaces which are parallel 

to the conduction path will thus provide a barrier to inter-granular C u02 plane 

connectivity and hence conductivity. In contrast, interfaces which cut the Cu02 planes 

are required for inter-granular conductivity in polycrystalline materials. Therefore the 

structure and composition of these surfaces will play a decisive role in determining 

intergranular weak links and surface conductivity (185).

The {001) and {100) surfaces in both materials are considered first. These are 

of particular importance because they are parallel and perpendicular to the Cu02 

planes. Then higher index surfaces are considered because boundary critical currents 

are controlled by the orientation of the Cu02 planes (186) and small crystallite
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morphologies may not be dominated by the closest packed, and hence lowest index, 

surfaces (187).

5.2 The Crystal Structures of La2C u04 and Nd2C u04

5.2.1 La2C u04

In the rare earth series RE2Cu04 (RE=La, Pr, Nd, Sm, Eu, Gd) copper is only 

octahedrally coordinated (188) to oxygen in lanthanum cuprate. Above 530 K (189) it 

has the K2NiF4 or T-structure with I4/mmm symmetry, shown in figure 5.1. This is a 

layered perovskite structure where (Cu02)2‘ sheets alternate with two rock salt (LaO)+ 

layers. Copper is octahedrally coordinated to six oxygens and lanthanum is 

nine-coordinate. The CuO bonds are approximately 25% longer along the c-axis 

which is due, in part, to Jahn-Teller effects associated with the d9 electronic 

configuration of copper II. However, this distortion must also be a consequence of the 

layer structure because the NiO bonds in La2N i04, where there is no Jahn-Teller 

effect, are also longer in the c-direction by approximately 11% (190). Below 530 K 

the Cu06 octahedra in La2Cu04 tilt about the c-axis and this leads to a structure with 

orthorhombic symmetry, Cmca (191). The driving force for this distortion is due to 

the relief of unfavourable anti-bonding ^-interactions in the Cu02 planes (192). 

Allan and Mackrodt (193) have demonstrated that the structural and defect properties 

of the tetragonal and orthorhombic polymorphs are comparable. Thus, in the work 

described in this thesis, only calculations on the tetragonal structure were performed 

and compared with an analogous study of Nd2C u04. This is structurally similar to 

La2CuQ4 and is now described.
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Figure 5.1: Comparison of the crystal structures of (a) La2C u04 and (b) Nd2C u04
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5.2.2 Nd2Cu04

Originally the rare earth cuprates of Pr, Nd, Sm, Eu and Gd were also thought 

to possess the K2NiF4 structure (194). However, in 1975, Mueller-Buschbaum and 

Wollschlaeger (195) examined the structure of Nd2Cu04 using X-ray crystallography 

and found that copper is not octahedrally coordinated, but is in a square planar 

configuration with four oxygens. The (Cu02)2' sheets are separated by fluorite 

structured (Nd20 2)2' layers and neodymium, which is smaller than lanthanum, is 

eight-coordinate. This structure has since become known as the Nd2Cu04 or 

T ’-structure which also possesses tetragonal (I4/mmm) symmetry. This structure is 

compared to the T-structure in figure 5.1. In contrast to La2Cu04, no phase change 

from tetragonal to orthorhombic symmetry is observed. This is because the in-plane 

CuO bond lengths are much greater in the Nd2Cu04 structures (for Nd2Cu04 1.98 A  

as compared to 1.89 A  in L^CuO^). Consequently, the unfavourable tt*-antibonding 

interactions are much smaller and the structure is determined by ionic considerations 

(192).

In the next section the surface methodology is described. This is required in 

order to classify the surfaces that are considered in the following sections.

5.3 Surface Methodology

The stable surfaces of ionic crystals will be those at which the Madelung sums 

converge with increasing crystal size. This occurs when the crystal is electrically 

neutral and also when there is no net dipole moment perpendicular to the surface 

(196,197). This can be seen by considering the expressions given in Chapter 2 

(section 2.5) that are used to calculate the Madelung sums. They give the electrostatic 

potential due to a layer of charges q at a perpendicular distance z. A sum over each
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sublattice on each plane gives the total electrostatic potential. For distances z greater 

than a few interionic separations the contribution from a planar sublattice reduces to 

the form:

V(z) = (27t/A)qz (5.1)

where A is the area of the unit cell in the plane. This expression is identical to the 

potential due to an infinite charged plane of charge density:

p =q/A (5.2)

The field due to the charged plane, E is then given by:

E = 2n(q/A) (5.3)

Since equations 5.1 and 5.3 do not diminish with increasing z the potential will be 

infinite at infinite distances from an individual plane. However, for a crystal which is 

constructed as a neutral block the infinities cancel and the potential becomes constant 

at large distances. In fact, it becomes zero in all cases except where there is a dipole 

moment perpendicular to the surface (196,197).

These points are illustrated in figures 5.2(a)-(c) by considering three different 

stacking sequences: type 1; type 2 and type 3 after Tasker (196). In figure 5.2(a), 

which represents type 1 surfaces, each plane has an overall charge of zero since it 

consists of both anions and cations in stoichiometric ratio. The potential (5.1) cancels

on each plane because the contributions of the sublattices are equal and opposite and

thus addition of extra planes on the surface of the crystal make no contribution to the 

energy in the bulk crystal. Consequently, the lattice sums required for the Madelung
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Figure 5.2: The three different stacking sequences of 
charged planes: (a) type 1; (b) type 2; (c) type 3
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energy of any ion site to converge need include only a few planes either side of that 

site. An example of such a stacking sequence is the {001} surface of MgO.

Figure 5.2(b) shows a symmetric stacking sequence of charged planes which is 

referred to as a type 2 surface. The repeat unit consists of three planes in symmetrical 

configuration and hence there is no dipole moment perpendicular to the surface. Each 

plane contributes a term to the potential sum, but the sum over the three plane repeat 

unit is zero because of self-cancellation. Addition of extra neutral repeats at the 

surface of the crystal does not affect the ions in the bulk and again the Madelung 

sums for the potential at any ion site are rapidly convergent. An example of such a 

surface is the {111) of CaF2.

The last surface that is considered is represented schematically in figure 5.2(c) 

and is denoted a type 3 surface. It consists of alternately charged planes and this 

stacking sequence produces a dipole moment perpendicular to the surface. Addition 

of an extra neutral repeat unit of two planes on the surface of the crystal will affect 

the energy of ions an infinite distance below the surface. Consequently the Madelung 

sum cannot be truncated and must include contributions from every plane out to the 

surface. This summation diverges with increasing crystal size and thus the surface 

energy is infinite.

The electric field at an ion site will also not cancel when the crystal terminates 

at a type 3 surface, but reaches a constant value at infinite distances into the crystal. 

This can be seen by considering an ion on plane 1 of figure 5.2(c). The field from the 

planes labelled 2 cancels by symmetry, as does that due to the dipole layers 3 and 4. 

Assuming that the contribution to the electric field from planes in the bulk of the 

crystal do likewise, the field due to the surface plane is left.

The instability in the stacking sequence at a type 3 surface due to a 

perpendicular dipole moment can be removed by surface reconstruction or the 

adsorption of foreign atoms (198). Kummer and Yao (199) have demonstrated that the
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(a) (b)

Figure 5.3: (a) Unstable type 3 dipolar surface 
(b) Instability removed by surface reconstruction. 
Note that the stacking sequence in b is type 2.
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energy of a finite crystal will be lowered if charge is transferred from the upper to the 

lower face (figure 5.3) i.e. the surface is reconstructed and the stacking sequence 

becomes type 2. Using the electrostatic argument given above, the electric field at the 

centre planes is zero and the surface energy will thus be finite for any block size. 

Thus, the polar type 3 surfaces cannot be simple bulk terminations and will 

reconstruct. Examples of type 3 surfaces that have been observed experimentally are 

impurity stabilised NiO {111} (200) and SrTi03 {111} (201).

The lowest index surfaces are now classified as type 1, 2 or 3. After 

discussing their relative stabilities, the higher index surfaces of both materials are 

described.

5.4 The {100} and {001} Surfaces of La2C u04 and Nd2C u04

As mentioned above, the {100} and {001} surfaces are perpendicular and 

parallel to the C u02 planes in La2Cu04 and Nd2Cu04. The resistivity of these 

materials is highly anisotropic (184) and it is much lower in the ab plane (see figure 

5.1) because of the perovskite layer structure. Therefore {001} surfaces, which are 

parallel to the ab plane, will have a detrimental effect on the connectivity of the Cu02 

planes and consequently inter-granular conduction in these materials.

The {001} surface of La2Cu04 is a type 2 surface and terminates in a rumpled 

layer of LaO (figure 5.4). In contrast, the {001} surface of Nd2Cu04 is a polar type 3 

surface and must, therefore, be stabilised by reconstruction. The stacking sequence of 

Nd2Cu04 is shown in figure 5.5(a) along with the two reconstructions which lead to a 

surface terminating in oxygen (figure 5.5(b)) and a surface terminating in 

copper-oxygen (figure 5.5(c)). The {100} surfaces are both type 1 surfaces with 

neutral planes of La2Cu04 or Nd2Cu04.

In the next two sections, calculations of the stabilities of the low index
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Figure 5.4: The Stacking Sequence 
at the {001} surface of La2Cu04

La - O - La - O 

O - Cu - O 

La - O - La - O

Figure 5.5a: The Stacking Sequence 
at the {001} surface of Nd2Cu04

o-o-o-o
Nd - Nd

O - C u - O - O - C u - O

Nd - Nd

Figure 5.5b: Reconstructed Figure 5.5c: Reconstructed
{001} Nd2Cu04 oxygen surface {001} Nd2Cu04 copper

oxygen surface

0 - 0  O - Cu - O

Nd - Nd Nd - Nd

O - C u - O - O - C u - O  O - O - O - O

Nd - Nd Nd - Nd

0 - 0  O- Cu - O
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surfaces of each material are discussed.

5.4.1 La2C u04

The calculated energies for the unrelaxed and relaxed surfaces are given in 

table 5.1. In the absence of relaxation, the {001} surface terminating in a rumpled 

lanthanum-oxygen layer will dominate the equilibrium crystal morphology in 

preference to surfaces perpendicular to the C u02 planes. However, extensive 

relaxation of the {100} surface, unlike the {001} surface, leads to approximately 

equi-energetic surfaces, which has important implications for the equilibrium crystal 

morphology and consequently inter-granular connectivity of the Cu02 planes in this 

material. The crystal morphology is discussed further in section 5.6.

The extent of the relaxations at the {100} surface is shown in figures 5.6. The 

principal features are atomic displacements of up to 0.4 A  perpendicular to the surface 

and 0.2 A  within the surface planes and also displacements of up to 0.06 A  six layers 

(approximately 10 A ) into the bulk. Thus, the extent of the {100} surface relaxation 

into the bulk is comparable to the coherence length in the superconducting ab plane.

The {001} surfaces terminating in a copper oxygen plane must reconstruct or 

adsorb charge because they are inherently dipolar type 3 surfaces. After 

reconstruction by halving the density of oxygen and copper at the surface (i.e. 

removing the dipole perpendicular to the surface) the unrelaxed and relaxed energies 

can be calculated and these are compared with the {001} lanthanum-oxygen 

termination in Table 5.1. The non-dipolar lanthanum-oxygen surface is more stable 

than that of a dipolar copper-oxygen by 0.4 Jm"2. This result contradicts the 

conclusions of Brookes et al. (202) who used LEED and AES to investigate the 

structure of this surface. They found that on annealing La2Cu04 single crystals, the
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Table 5.1: Unrelaxed and relaxed surface energies 

of the {100} and {001} surfaces of La2Cu04 and 

surfaces of La2Cu04 and Nd2Cu04 (all energies in Jm"2)

Unrelaxed Relaxed

La2Cu04

{100} 4.5 1.3

{001}OLa 1.7 1.2

{001}OCu 11.2 1.7

Nd2Cu04

{100} 2.7 1.7

{001}O 6.5 3.6

{OOlJOCu 5.6 1.3



© La
o Cu
• O

<100>

<001>

Figure 5.6: Sketch of the principal relaxations at the {100} surface of La2C u04
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diffraction pattern changed from (lx l) to (1x8) with a corresponding increase in the 

Auger Cu/La ratio. This they attributed to the preferential formation of Cu02 rather 

than LaO planes with ordered oxygen vacancies at the {001} surface. A 

transformation of this type, however, may also correspond to the formation of surface 

steps or be related to defect segregation: this can only be confirmed by further 

experimental investigation.

5.4.2 Nd2C u 0 4

The structure of T ’-Nd2Cu04 is similar to that of T-La2Cu04 except that 

copper is coordinated to four planar oxygens and separated by three fluorite structured 

layers of neodymium and oxygen, (see Figure 5.1). In common with La2Cu04, the 

{100} of Nd2Cu04 is a type 1 surface. However, the {001} stacking sequence is 

dipolar but can be reconstructed so that the surface terminates at an oxygen or 

copper-oxygen surface (figure 5.5). The calculated unrelaxed and relaxed energies of 

these surfaces are compared with those of La2Cu04 in table 5.1. The unrelaxed {100} 

surface of Nd2Cu04 is more stable than both {001} surfaces. On relaxation this order 

changes and the {001} surface terminating in a copper-oxygen plane is more stable 

than the {100} by 0.4 Jm'2. Thus the equilibrium crystal morphology will be 

dominated by {001} copper-oxygen surfaces. This result is unexpected because polar 

type 3 surfaces are usually assumed to be less stable than corresponding type 1 and 

type 2 surfaces and are often ignored. Type 3 surfaces have been observed 

experimentally in both binary (200) and ternary oxides (201), however, and there 

appears to be a connection between their stability and the band gap of the material in 

question. Also, recent theoretical work on the surfaces of spinels by Davies (203) 

supports the finding that reconstructed dipolar surfaces can have low energies.

A schematic representation of the relaxations at these low index surfaces of



119

•  Cu 

0  Nd

O O

< 100>

<001>

Figure 5.7: Sketch of the principal relaxations at the {100} surface of Nd2C u04
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Nd2Cu04 is given in figures 5.7 and 5.8. All the atoms at the surface of the {100} 

relax inwards (figure 5.7), but by different amounts. The relaxations of neodymium 

and in-plane oxygens ions are greatest perpendicular to the surface and are 0.12 A . 

Ionic relaxation within the surface plane is less than 0.08 A . Relaxation is also 

observed below the surface, but by plane 3 (about 4A below the surface) is less than

0.05 A . At the {001} surface terminating at half an oxygen plane the relaxations are 

larger (figure 5.8(a)). The surface oxygen ions move 0.22 A  perpendicular to the 

surface while the first Cu02 plane below the surface (about 3 A ) rumples appreciably

1.e. the copper ions move out by 0.22 A  whereas half the oxygen ions move out by 

0.43 A  and the other half relax towards the bulk by 0.19 A. Relaxation parallel to the 

surface is much smaller and less than 0.01 A . In the second Cu02 plane below the 

surface (about 9 A ) the ions relax by less than 0.01 A . At the {001} surface of 

Nd2Cu04 terminating in half a Cu02 plane (figure 5.8(b)) the copper ions move out of 

the surface by 0.39 A  while the oxygens move in by different amounts (0.36 A  and

0.07 A ). Lateral copper movement is also large (0.4 A ). In the second Cu02 plane 

below the surface the copper ions move by less than 0.01 A  while the maximum 

displacement of oxygen ions is 0.04 A  perpendicular to the surface.

Comparing the two cuprates, which have different structures, the relative 

stabilities of the unrelaxed surface energies are different. On relaxation, the most 

energetically favourable surfaces of La2Cu04 and Nd2Cu04 are the {001} planes 

which have similar stabilities. However they terminate at different surface planes and 

this is due to differences in surface structure of the two cuprates and the large 

relaxation (4.3 Jm'2) of the {001} copper-oxygen surface of Nd2Cu04. The {100} 

surfaces terminate in a stoichiometric repeat unit but the arrangement of the atoms in 

the plane is different in the two structures. Relaxation is much less dramatic in the 

T ’-structure at the {100} surface, which is perpendicular to the Cu02 planes and will
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thus be less detrimental to intergranular conductivity.

Experimentally, Nd2_xCexCu04 (204), isostructural Gd2Cu04 (205) and 

La2Cu04 (206) form plate-like single crystals with their short dimension parallel to 

the c-axis. The agreement with the work described here, however, which is 

particularly good for the T’-structure, may be fortuitous because no account of the 

kinetics of crystal growth is included in the calculations. Kinetics influence crystal 

morphologies as exemplified by Karalewski et al. (207), who have shown that by 

varying the starting flux composition and the growth conditions either cubic or 

plate-like crystals of a Y-Ba-Cu-O phase are obtained experimentally. In addition, 

two other factors need to be considered. Firstly, segregation will also influence the 

relative stabilities of surfaces (173) and impurities are often incorporated in these 

crystals unintentionally e.g. Pb (208) from the PbO flux growth method. Further 

discussion on defect segregation is given in chapter 6. The second factor that has not 

been addressed is that there may be other stable surfaces which contribute to the 

equilibrium crystal habit and a discussion of these is now given.

5.5 Higher Index Surfaces of La2C u04 and Nd2C u04

Previous calculations on high index surfaces in ceramics have been confined 

to those with the rocksalt structure. Tsang and Falicov (91) showed that relaxation at 

the (1,0,12) surface of NaCl is much greater than the relaxation of the corresponding 

surface of solid argon. This they attributed to the polarisability of the ionic material. 

However, no comparison was made with other stepped surfaces. Tasker and Duffy 

(209) made a thorough study of the relative stabilities of periodic monatomic steps on 

the (001} and {101) surfaces of MgO and NiO. They found that there were repulsive 

interactions between steps but these were of short range. Thus at low step densities
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the step energy has a linear dependence on 0 , the angle of inclination of the surface to 

the {100}. However, for large 0  the step interaction energies are complicated.

The structures of the higher order surfaces of La2Cu04 and Nd2Cu04 that 

have been investigated are more complicated than the stepped surfaces of the rocksalt 

ceramics. They can however be classified as {nlO} and (10m) surfaces and are now 

described.

5.5.1 {nlO} Surfaces

The {nlO} series of the T- and T ’-structures form steps between the {100} and 

{010} surfaces which are symmetry related planes. They may be subdivided into odd 

and even values of n. For n=even they are type 1 surfaces with monatomic steps 

composed of oxygen and La2Cu02 or Nd2Cu on terraces of n atoms of {100}. This 

series is thus comparable to the {10n} rocksalt structured surfaces discussed in the 

previous section. For n=odd they are intrinsically unstable type 3 surfaces and will 

reconstruct or adsorb foreign atoms - this is also the same for SrTiC^. The number of 

atoms in a terrace is odd for n=odd and even for n=even. It was only possible to 

compute relaxed energies for the {110} and {210} surfaces because for higher order 

surfaces the required size of region II necessary for convergence of the result became 

computationally prohibitive. The structures of the two surfaces of both materials 

investigated are given in appendix 5 (figures A5.1 and A5.2).

5.52  {10m} Surfaces

The {10m} surfaces can also be divided into two series with m=odd and 

m=even. For each m=even surface there is only one termination which gives a
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non-polar type 2 surface. The Miller indices of the ’even’ surfaces which were 

investigated are the {102}, {104} and {106} and their structures are given in 

appendix 5 (figures A5.3, A5.4, A5.5, A5.6). These surfaces are not as simple as the 

{nlO} (n=even) surfaces for two reasons. Firstly, the planes in the stacking sequence 

are not stoichiometric repeat units of La2Cu04 or Nd2Cu04 and secondly, the number 

of atoms in a terrace and in a step is not constant for a given cleaved surface. The 

major consequence of these differences is that there are several possible arrangements 

of atoms at any given surface (with a particular Miller index) for which surface 

energies can be calculated. The configuration with the lowest energy represents the 

thermodynamically stable surface and consequently that which is important for the 

equilibrium crystal morphology. The configurations with higher energies are 

metastable and their formation will be controlled by the kinetics of crystal growth. To 

find the thermodynamically stable configuration of a given surface (with a particular 

Miller index) the unrelaxed energies of the different possible atomic arrangements 

were calculated and the one with the lowest energy was taken as the starting 

configuration for the relaxation. Although unrelaxed energies between surfaces with 

different Miller indices cannot be relied on to give the relaxed order, this proved to be 

a reliable approximation for different configurations at the same Miller indexed 

surface. (Note that the most stable configuration of each surface is given in figures 

A5.3 to A5.6).

The m=odd surfaces in the {10m} series of these materials are not dipolar in 

contrast to the odd {nlO} series. These surfaces do, however, have two possible 

terminations for which the stoichiometric repeat unit is non-polar. The Miller indices 

of the surfaces, with corresponding terminations are:

1. {101} CuO and O for both materials

2. {103} CuO and La or CuO and Nd
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3. {105} CuO and O or CuO and Nd

Their structures are given in Appendix 5 (figures A5.8 to A5.13) and, as before, these 

represent surfaces for which the unrelaxed energies are lowest. These surfaces are 

type 2 rather than type 1 surfaces because only one of the planes, the CuO plane, is 

uncharged. Surfaces where there are two possible non-polar terminations have also 

been observed in SrTi03 (210) which possesses the perovskite structure. Their 

surfaces can be divided into an odd and even {nlO} series. For n=odd the repeat unit 

of the stack is dipolar, whereas when n=even there are two possible terminations: SrO 

and T i02, and these are type 1 surfaces.

5.5.3 Results

5.5.3.1 La2C u04

The unrelaxed (Uu) and relaxed (Ur) energies of the {101}, {103} and {105} 

terminations are given in table 5.2. The energies Uu and Ur are calculated from the 

equation:

U = 1/2{(block calculation) - (surface calculation)}/Area

(5.4)

By themselves these energies do not correspond to the energy required to cleave the 

crystal because they only account for the formation of one of the surfaces e.g. for the 

{101} surface they give the energy required to create either a CuO or an O surface. 

However, the average of the two energies of a surface with a particular Miller index 

will give the energy required to cleave the crystal exposing both surfaces. Note that 

this definition (equation 5.4) does not include step energies and step interaction
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Table 5.2: Unrelaxed and relaxed energies (Jm~2) of 
the {10m) m=odd surfaces of La2Cu04

Terminating
Plane

Unrelaxed
Energy

Relaxed
Energy

Average*
Energy

{101)0 5.8 |
1.75

{IOIJOCu 5.8 1.6 J
{103}La 6.4

“  \ 1.55
{103}OCu 6.4 1.5 J
{105)0 12.4 2.2 1

2.2
{105)OCu 12.4 2.2 J

♦Energy required to cleave crystal exposing both 
terminations
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energies between different terminations and thus it is presupposed that the step 

surface density is small.

Prior to relaxation, the energies of different terminations of a surface with a 

given Miller index are equal. The unrelaxed order of stabilities between the different 

surfaces is:

{101} >{103} >{105}

Thus with increasing m, the unrelaxed energies for cleaving the crystal increase. On 

minimisation the extent of relaxation is different at different surfaces. For example, 

the reduction in the energy required to Cleave the crystal at the {103} surface is 4.85 

Jm"2 or 76% whereas that at the {101} is reduced by 4.05 Jm'2 or 70%. The 

differences in the degree of relaxation leads to a change in the relative order of 

stability to:

{103} >{101} >{105}

At each surface the different terminations relax by different amounts. The OCu 

termination is favoured over O at the relaxed {101} surface. At the {103} surface 

relaxation is more pronounced at the OCu rather than the La termination. At the 

{105} surface, both the OCu and the O terminations relax by the same amount. 

Differences in the relaxation at the {001} surfaces of this material were also seen in 

section 5.4.1 (although the surfaces were reconstructed and their unrelaxed energies 

were also different). Mackrodt (211) also found that the relaxation of T i02 and SrO 

{001} surfaces in SrTi03 led to different degrees of relaxation; the T i02 surface being 

more stable by 0.2 Jm'2.

The unrelaxed and relaxed energies at the m=even {10m} surfaces are given
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Table 5.3: Unrelaxed and relaxed energies (Jm-2) 

of the {10n) n=even surfaces of La2Cu04

Terminating
Plane

Unrelaxed
Energy

Relaxed
Energy

{102} 4.7 1.3

{104} 5.8 1.5

{106} 8.9 1.7

{102}* 10.7 2.0

{104}* 9.5 2.0

{106}* 7.2 unstable

* surfaces with steps three ions high 
(see Appendix 5 A5.14 and A5.15)

Table 5.4: Unrelaxed and relaxed energies (Jm'2) 
of the {100}, {110} and {210} surfaces of La2Cu04

Miller
index

Unrelaxed
Energy

Relaxed
Energy

{100} 4.5 1.3

{110} 3.3 1.6

{210} 5.1 1.6
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in table 5.3. In each case a number of different surface geometries were investigated 

and those with the lowest relaxed energy are given. For comparison, the calculated 

energies of reconstructed surfaces that are three ions high and terraces m atoms long 

are also included in the table. The structures of these additional surfaces are given in 

Appendix 5 (figures A5.14 and A5.15). The ordering of these surfaces before 

relaxation is:

{102} >{104} >{106}

As with the odd series, the stability decreases with increasing m. On relaxation the 

order does not change, although the degree of relaxation is different in each case. The 

stability cannot decrease indefinitely with increasing n because the surface will start 

to resemble the {001} surface. The unrelaxed energies are lower than the unrelaxed 

energies of the surfaces containing steps that have been reconstructed. For the relaxed 

reconstructed surfaces, only the {102} and {104} surfaces are stable but are of higher 

energy than the cleaved surfaces. It is concluded that steps are preferentially less than 

three ions high.

The order of stabilities before relaxation of the {10m} for both m=odd and 

m=even are:

{001} > {100} > {102} > {101} = {104} > {103} > {106} > {105} 

and after relaxation are:

{001} > {100} = {102} > {104} > {103} > {106} > {101} > {105}
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Figure 5.9: Plot of the surface energy of the {10m} (m=0,l,2,3,4,5,6) 

planes against misorientation angle with the {001} surface of La2C u 0 4
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The surface energies are plotted against the misorientation angle 0  with the basal 

{001} surface in figure 5.9. In contrast to this series, in rocksalt structured oxides 

there is no relationship between 0  and surface energy. This reflects the more complex 

surface structures in these ternary oxide surfaces. At much smaller misorientation 

angles (much larger terrace sizes) a relationship comparable to the rocksalt series 

might arise. However, it is not possible to investigate this further because the required 

calculations are both too computer memory and computer time intensive.

The unrelaxed and relaxed energies of the {110} and {210} surfaces have also 

been calculated. These are given in table 5.4 and compared to the {100} surface. 

These surfaces represent the first two members of the {nlO} surfaces. When n=l the 

surface is dipolar and was stabilised by halving the density of oxygen in the surface 

plane. The unrelaxed energies of these two surfaces are much greater than the relaxed 

ones. The {110} and {210} relaxed energies are the same but greater than the {100}.

5.5.3.2 Nd2C u 0 4

In this section the structures and relative stabilities of these surfaces of 

Nd2Cu04 are discussed. They also fall into the same series types. Thus when 

comparing the two structures only the {001} surfaces have different types (type 2 in 

La2Cu04 and type 3 Nd2Cu04). The unrelaxed and relaxed energies of these surfaces 

are given in tables 5.5 to 5.7. The unrelaxed order of the {10m} where m=odd 

surfaces is (from table 5.5):

{105} >{101} >{103}

On relaxation, the {101} O and OCu surfaces relax by the same amount. In contrast, 

relaxation at the different terminations of the {103} and {105} are not the same. At



132

Table 5.5: Unrelaxed and relaxed energies (Jm-2) of the 
the {10m} m=odd surfaces of Nd2Cu04

Terminating
Plane

Unrelaxed
Energy

Relaxed
Energy

Average*
Energy

{101)0 6.7 „  j
1.35

{101} OCu 6.7 1.4 J
{103}Nd 8.9 2.6 1

2.0
{103} OCu 8.9 1.4 J

{105}Nd 4.3

1 6  1 1.35
{105} OCu 4.3 i .i  i

♦Energy required to cleave crystal exposing both 
surfaces
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the {103} the difference is 1.2 Jm'2 and 0.5 Jm'2 at the {105}. However for 

stoichiometric crystals, the area of each termination must be the same, as discussed in 

section 5.5.3.1. The order of stabilities (based on the energy to cleave the crystal) 

after relaxation is:

{105} = {101} >{103}

and hence the extent of relaxation at the {101} (5.35 Jm'2 (79%)) is greater than at the 

{105} (2.1 Jm'2 or 49%).

The second set of surfaces that are considered are the {10m} series with 

m=even. As with La2Cu04 only one termination leads to a non-dipolar stacking 

sequence perpendicular to the surface. The unrelaxed and relaxed energies of these 

are given in table 5.6. The unrelaxed order is:

{106} >{102} >{104}

and on relaxation becomes

{106} = {102} >{104}

Thus again, the different surfaces relax by different amounts. Combining the two 

{10m} series and the {100} and {001} surfaces the unrelaxed order is:

{100} > {105} > {106} > {001}OCu> {102} > {101} > {104} > {103}

and the relaxed order is:
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Table 5.6: Unrelaxed and relaxed energies (Jm'2) 

of the {10m) m=even surfaces of Nd2Cu04

Terminating
Plane

Unrelaxed
Energy

Relaxed
Energy

{102} 6.0 1.7

{104} 8.5 2.3

{106} 5.3 1.7

Table 5.7: Unrelaxed and relaxed energies (Jm'2) 

of the {100}, {110} and {210} surfaces ofNd2Cu04

Miller
Index

Unrelaxed
Energy

Relaxed
Energy

{100} 2.7 1.7

{110} 6.3 2.9

{210} 9.8 2.3
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{001 }OCu * {101} = {105} > {100} > {102} ={106} > {103} > {104}

The relaxed energies are also plotted in figure 5.10 against misorientation angle 0  

with the basal {001} surface. The lack of a trend in this figure demonstrates that in 

non-cubic structures, as with La2Cu04 the relationship between orientation angle and 

surface energy is much more complicated than for cubic NiO and MgO.

The unrelaxed and relaxed energies of the {110} and {210} are given in table 

5.7 and compared to those of the {100}. The {110} surface is a type 3 surface and can 

be stabilised by halving the density of oxygen ions in the surface plane. In contrast the 

{210} surface is a type 2 surface. The order of stability before relaxation is:

{100} > { 110} > { 210}

and after relaxation is:

{100} > {210} > {110}

Thus the {110} surface of Nd2Cu04, which has a higher density of steps, is least 

stable after relaxation, in contrast to La2Cu04.

5.5.3.3 Comparison of the Two Materials

Four important points, which are general features of surface relaxation, 

emerge from these results. Firstly, energies of relaxed surfaces are much lower than 

those of unrelaxed surfaces. Secondly, relaxation energies vary from plane to plane. 

Thirdly, the relative stabilities of surfaces are different before and after relaxation. 

Finally, lattice relaxation reduces the energy differences between the various surfaces.
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Figure 5.10: Plot of the surface energy of the {10m) (m=0,l,2,3,4,5,6) 

planes against misorientation angle with the {001} surface of Nd2C u 0 4
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There are a number of differences between the surfaces of La2Cu04 and 

Nd2CuC>4. In contrast to the {001} surfaces where the types of stacking sequence are 

different the other surfaces with a given Miller index have the same type. However, 

the intrinsic structures are different. Thus the unrelaxed and relaxed surface energies 

are different as is the order of surface stabilities. This implies that the structures will 

also have different equilibrium morphologies, which are now discussed.

5.6 Equilibrium Morphologies of La2C u04 and Nd2C u04

Gibbs (212) first proposed that the equilibrium morphology of a crystal will be 

that for which the total surface energy is a minimum for a given volume i.e.

Ycrys= E (YiAj) = minimum at constant volume

(5.5)

where Yi and Aj are the surface energy and area of the i* crystallographic face 

respectively. In 1901 Wulff (213) suggested further that the shape defined by equation

5.5 would be such that hi? the face normal vector from a point within the crystal would 

be proportional to Yi or:

hi = *Yi (5.6)

where A, is a constant that depends on the absolute size of the crystal. This theorem is 

strictly only applicable to crystals grown infinitely slowly i.e. at equilibrium, which of 

course is not practical. Therefore, the theorem is said to be true for crystals in which 

rearrangement of the crystal is possible at all stages during growth due to the short 

distances over which matter has to travel.
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Using this theorem, the crystal morphologies of La2Cu04 and Nd2Cu04 before 

and after relaxation are shown in figures 5.11 and 5.12 assuming that the {001} and 

{100} surfaces are important. Before relaxation, the equilibrium morphology of 

La2Cu04 is dominated by the {001} surface parallel to the Cu02 planes. In contrast 

the area of the {001} in Nd2Cu04 is much smaller than that of the {100} surface. On 

relaxation the equilibrium morphologies do not correspond to the unrelaxed ones. 

This is because of the much greater relaxation of the {100} surface compared to the 

{001} surface of La2Cu04 and the {001} surface compared to the {100} surface of 

Nd2Cu04. This demonstrates that surface relaxation must be included in order to 

calculate the equilibrium morphology of ternary oxides. A similar conclusion was 

reached by Mackrodt et al. (214) in their calculation of the equilibrium morphologies 

of the binary oxides a-Al20 3 and a-Fe20 3.

In figures 5.13 and 5.14 the equilibrium morphologies before and after 

relaxation of each cuprate have been recalculated allowing for the formation of higher 

index {10n} (n=l to 6) and {mlO} (m=l,2) surfaces. These figures show that the 

{100} and {001} surfaces will not be the only surfaces which determine the 

equilibrium crystal habit. Crystals that are grown in laboratories usually form platelets 

(204,205,206) and do not adopt the equilibrium morphologies predicted in figures 

5.13 and 5.14. This suggests that the experimental crystal morphologies are 

dominated by kinetic factors.
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<001>

(a) (b)

Figure 5.11: The calculated unrelaxed and relaxed equilibrium 
morphologies o f La2C u04 (a) unrelaxed (b) relaxed

<001>

(a) (b)

Figure 5.12: The calculated unrelaxed and relaxed equilibrium 

morphologies of Nd2C u04 (a) unrelaxed (b) relaxed

(morphologies generated using ’morph’ package - see ref. 203)
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<001>

t

(a) (b)

Figure 5.13: The calculated unrelaxed and relaxed equilibrium morphologies 
of La2C u04 (including the higher index surfaces) (a) unrelaxed (b) relaxed

<001>

(a) (b)

Figure 5.14: The calculated unrelaxed and relaxed equilibrium morphologies 
of Nd2C u04 (including the higher index surfaces) (a) unrelaxed (b) relaxed
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5.7 Summary

In this Chapter, the {10m} (m=zero or integer), {nlO} (n=integer) and the 

{001} surfaces of La2Cu04 and Nd2Cu04 are classified into three types. Type 1 

surfaces are composed of a stack of neutral planes and the {100} surfaces of both 

materials belong to this class. The planes which make up type 2 surfaces are not 

neutral but the stacking sequence is such that it is not dipolar perpendicular to the 

surface. The {10m} (m*0) and {nlO} (n=even) surfaces make up this type. Type 3 

surfaces are the same as type 2 surfaces except that the stacking sequence is dipolar. 

The {001} surface of Nd2Cu04 and the {nlO} (n=odd) surfaces are of this type. Thus 

only the {001} surfaces of the two materials fall into different categories.

The orders of stability of the surfaces before and after relaxation are different 

because the surfaces relax by different amounts. Similar behaviour has been observed 

in the corundum structured oxides (214). Also, the relaxation behaviour and surface 

structures are complicated and - for the surfaces investigated - do not follow the 

trends observed for the rock-salt oxides (209).

The {001} surface of Nd2Cu04, which is inherently dipolar, has a low surface 

energy (1.3 Jm*2). This is not surprising because the surface has been reconstructed to 

remove the dipole moment perpendicular to the surface. The stabilities of three other 

dipolar surfaces (the {001 }OCu of La2Cu04 and the {110)0 surfaces of La2Cu04 

and Nd2Cu04) were also calculated by halving the density of ions in the surface 

plane. These surfaces were not as stable as the {001} surface of Nd2Cu04. The results 

show that reconstructed surfaces along dipolar directions in ternary oxides can have 

low energies.

The equilibrium morphologies of the two materials are different. This is partly 

because the surfaces have different structures and also because they exibit different 

relaxation behaviour. The predicted morphologies are not similar to the
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experimentally grown crystals. This may be due to the assumption that 

thermodynamic equilibrium is maintained throughout crystal growth which is unlikely 

to be applicable for such large crystals. Furthermore, crystals grown in laboratories 

are often intentionally (204) or unintentionally (206) doped, whereas these 

calculations are for pure crystals.

The large relaxations observed at surfaces that are not parallel to the ab plane 

will disrupt the C u02 planes and consequently have a deleterious effect on 

intergranular conductivity. Surface conduction at the {001} surfaces will be disrupted 

by rumpling of the Cu02 planes, but this will be much lower in La2CuC>4. Surface 

composition and non-stoichiometry will also influence conductivity and they are 

discussed in the next Chapter.
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Chapter 6

Surface Defect Properties of La?CuQ^ and Nd^CuQ^

6.1 Introduction

In this chapter, calculations on point defect formation energies at the {001} 

and {100} surfaces of La2Cu04 and Nd2Cu04 using the CHAOS (85) code developed 

by Duffy and Tasker are discussed. The same potentials as those in Chapter 5 were 

used and the theoretical methods are described in Chapter 2.

Stoichiometric La2Cu04 and Nd2Cu04 are antiferromagnetic semiconductors 

(182). When La2Cu04 is doped with appropriate monovalent cations (215), divalent 

cations (216) and/or excess oxygen is incorporated into the lattice (217), the Neel 

temperature (TN) of the antiferromagnetic state decreases and at TN = 0 K La2Cu04 

becomes a spin glass. A further increase in the impurity concentration results in this 

cuprate becoming a superconductor at low temperatures. Nd2Cu04 shows a similar 

change in magnetic and electronic properties (182) when it is doped with appropriate 

tetravalent cations and fluorine and prepared under reducing conditions (28,29,39,31). 

This behaviour is believed to be related to oxidation or reduction of the copper oxide 

planes in the two materials respectively (218).

Defect concentrations at surfaces and grain boundaries also play an important 

role in determining the properties of these materials. For example, the preparation of 

good tunnelling interfaces composed of metal-interface-superconductor sandwiches 

(MIS) is hampered by dead layers which arise from changes in surface stoichiometry 

(219). In common with other ceramic materials (220,221), defect and impurity 

concentrations are likely to differ from the bulk. Consequently, the stoichiometry and 

composition of the {100} and {001} surfaces of tetragonal La2CuQ4 and Nd2CuQ4
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are investigated in this chapter. In the next section, bulk and surface point defect 

calculations are compared. Then the fundamental surface lattice disorder in the 

stoichiometric compounds is considered. Next, electronic defects, non-stoichiometry 

and impurities are discussed. The final section of this chapter deals with the 

calculation of surface defect concentrations.

6.2 Comparison of Surface and Bulk Point Defect Calculations

The relaxed configuration of the surface generated by MIDAS is used as a 

starting point for the point defect calculations. Madelung energies calculated from the 

surface code on the surface plane are different from those in the interior of the crystal. 

This is illustrated in table 6.1 which gives the Madelung energies at copper sites near 

the {001} surface of La2Cu04. Over the first 3 planes (about 13 A  in depth) the 

Madelung energies at copper sites are different, but by the 4th plane (about 20  A  in 

depth) they have settled down to a constant value. However, the constant Madelung 

energies do not equal those determined by a bulk simulation code e.g. CASCADE 

(81) because different boundary conditions are used in each calculation. The 

relaxation of the surface, which is not included in the bulk calculation, induces (222) 

an electrostatic potential into the bulk of the crystal which is independent of depth

(223). The shift in the Madelung field can be quantified by the expression ’qV \ where 

q is the full ionic charge of the ion involved and V, the shift in potential. The shift in 

V depends on the magnitude of the displacement of the ions at each surface and hence 

is unique for each surface. In the following sections defect formation energies have 

been adjusted so that the constant Madelung energy equals that of the bulk 

calculation. In this way the formation energies can be compared with corresponding 

bulk values as well as those for other surfaces.

Although the boundary conditions that are used in the surface and bulk
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Table 4.1: Calculated Madelung energies of 
copper Ions at the {001} surface of La2Cu04 
compared to the bulk cation Madelung energy

Plane Madelung Energy

1 52.07
2 53.01
3 52.96
4 52.95
5 52.95
6 52.95
7 52.95
8 52.95
9 52.95
10 52.95

bulk 57.53
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calculations are different, the way in which the total energy of the defective system is 

minimised is the same. As described in chapter 2, the crystal is split into two regions: 

an inner region (region I) immediately surrounding the defect where the ions are 

appreciably distorted, and an outer region (region II) where the ions are only slightly 

perturbed. Ideally the size of region I should be chosen so that the relaxed point defect 

energy has converged, but as region I is increased the calculation reaches the limit of 

the available computer resources. In this work, 60 ions were used for the calculations 

of surface point defect energies. When the results were compared with corresponding 

calculations using 100 ions the agreement was favourable (i.e. the calculated energies 

were within 0.1 eV of eachother). Also, the time taken for these calculations was 

reasonable (e.g. a typical calculation of 20 iterations took 2 hours to run on a SUN 4 

workstation).

6.3 Fundamental Lattice Disorder

Ions in crystals are arranged in ordered arrays. Imperfections in stoichiometric 

crystals (fundamental lattice disorder) are due to missing ions (vacancies) at perfect 

lattice sites and/or extra ions (interstitials) incorporated at positions in the lattice 

which do not correspond to perfect lattice sites. In La2Cu04 and Nd2Cu04, the defects 

responsible for fundamental lattice disorder are lanthanum, neodymium, copper and 

oxygen vacancies and interstitials. Calculated surface cation vacancy formation 

energies are presented and compared with those in the bulk. Calculations on oxygen 

vacancies and interstitials are then described. These energies are required for the 

discussion on surface non-stoichiometry (section 6.5) and surface impurity solution 

(section 6.6). Note that cation interstitial formation energies are high (224) and are not 

discussed.
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6.3.1 Cation Vacancy Formation Energies

Cation vacancy formation energies at the {100} and {001} surfaces of 

La2Cu04 and the {100} surface of Nd2Cu04 are given in table 6.2 and compared with 

the corresponding bulk energies. The formation energies of copper vacancies are 

lower at the {100} surfaces. In contrast, at the {001} surface of La2Cu04 the 

formation energy of a copper vacancy is 0.8 eV higher than in the bulk. These results 

can be understood from the difference between the Madelung energies of surface 

cations and those in the interior of the crystal. These are given in table 6.3. At the 

{100} surfaces the surface copper Madelung energy is lower than that in the bulk, 

favouring negatively charged defects. In contrast, the Madelung energy of these sites 

at the {001} surface of La2Cu04 is higher and therefore negatively charged defects 

are destabilised.

The defect energy is not just determined by the Madelung energies of sites in 

the unrelaxed crystal, but also by the relaxation about the defect and the image charge 

resulting from a dielectric discontinuity (the latter being zero for isovalent defects). 

This is illustrated by comparing the relaxed formation energies of rare-earth vacancies 

with the corresponding Madelung energies given in tables 6.2 and 6.3. Lanthanum 

vacancies are more stable at the {100} surface of La2Cu04 than in the bulk, which in 

turn are more stable than at the {001} surface. Also, the formation energies of 

neodymium vacancies at the {100} surface of Nd2Cu04 are less favourable than in 

the bulk. While the stability of neodymium vacancies at the {100} surface of 

Nd2Cu04 can be understood using the argument of Madelung site energies, the 

relative stabilities of lanthanum vacancies cannot. This is because the effects of 

surface relaxation are neglected.

Calculations on cation vacancies at the {001} surface of Nd2Cu04 did not lead 

to stable relaxed configurations. From the Madelung site energies it is tentatively
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Table 6.2: Cation formation energies at the {100} and {001} 
surfaces of La2Cu04, the {100} surface of Nd2Cu04, and in 
the bulk (energies in eV)

La2Cu04 Nd2Cu04

{100} {001} bulk* {100} bulk

V  *** VRE 43.3 45.6 44.5 49.9 49.7

»»
v Cu 30.7 32.3 31.5 27.2 27.5

* reference 224

Note: RE = La, Nd

Table 6.3: Cation site Madelung energies at the {100} and {001} 
surfaces and in the bulk of La2Cu04 and Nd2Cu04 (energies in eV)

La2Cu04 Nd2Cu04

Site {100} {001} bulk {100} {001} bulk

Cu 54.35 58.50 57.52 49.94 52.77 50.70

La/Nd 84.75 83.44 84.08 91.19 90.66 90.96
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assumed that copper vacancies at this surface are indeed less stable than in the bulk. 

The stability of rare earth vacancies is less obvious because the difference between 

the bulk and surface Madelung energy is much smaller. A further calculation using 

100 ions in region I of CHAOS also failed and, therefore, the stability of neodymium 

vacancies at this surface cannot be predicted.

Previous workers (225,226,227) have shown that the formation energies of 

defects in the sub-surface region of binary oxides may also differ from those in the 

bulk. However, a complete survey of fundamental lattice disorder would require an 

excessive number of calculations. Therefore, a study of the change in cation vacancy 

formation energies with distance from the surface was not conducted.

The relative stabilities of oxygen vacancies and interstitials at the {001} and 

{100} surfaces of La2Cu04 and Nd2Cu04 are now discussed. These defects are 

important because, in the stoichiometric state, anion Frenkel disorder predominates 

(228) i.e. the majority defects are isolated oxygen vacancies and interstitials. Also, 

evidence for the existence of extraneous surface oxygen species and/or surface 

degredation (229,230) has been found.

6.3.2 Oxygen Vacancy Formation Energies

Oxygen vacancies created in the bulk can either be in (equatorial) or out 

(axial) of the C u02 planes. In the bulk of La2Cu04 the equatorial oxygen vacancy is 

more stable than the axial oxygen vacancy (224,231), whereas the reverse is found in 

Nd2Cu04 (232). This means that at low concentrations of oxygen disorder, vacancies 

will disrupt the C u02 planes in the bulk of La2Cu04 but not in Nd2Cu04.

Depth profiles of the variation in oxygen vacancy energy with distance from 

the {100} surfaces of La2Cu04 and Nd2Cu04 are given in figures 6.1 and 6.2. Three 

different oxygen sites in each stacking plane parallel to the surface can be identified.
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Two of these are equatorial oxygens and the other axial (type a). Those which are 

equatorial are either in a plane surrounded by four rare earth atoms (type b), or by two 

copper atoms (type c). The different oxygen sites are shown in figure 6.3.

At the {100} surface of La2Cu04, the energies for the axial vacancies (type a) 

are much lower at the surface than in the bulk and pass through a sub-surface 

maximum at plane 4 (about 11 A  below the surface). The oxygen vacancies in the 

Cu02 plane terminating in a type c site have the lowest formation energy and this 

energy does not change appreciably with depth from the surface. In contrast, the 

oxygen vacancies terminating in a type b site are much higher in energy and the 

surface oxygen vacancy migrates to the axial surface site. The type b oxygen vacancy 

in the plane below the surface is about 2 eV higher in energy than the corresponding 

type c oxygen vacancy. As the distance from the surface increases the oxygen 

vacancy formation energy in the Cu02 plane terminating in a type b plane decreases 

and approaches those of the type c plane. In the bulk these two Cu02 planes are 

identical. However, even at about 25 A  below the surface there is still a difference of 

0.25 eV between oxygen vacancy stabilities within them. From these results it is 

deduced that near the {100} surface of La2Cu04 oxygen vacancies will be confined to 

Cu02 planes terminating at c sites. However, at the terminating plane, some vacancies 

will form at the a sites. Using the law of mass action, the ratio of vacant a/c sites can 

be estimated from:

a/c = 2 exp {(Vc - VJ/kT} (6.1)

where Vc is the formation energy of a vacancy on site c. At 1000 K this a/c ratio is 

about 6/10 at the surface.

In Nd2Cu04, the most stable oxygen vacancy sites at the {100} surface and in 

the bulk are different (figure 6.2). The bulk formation energies are 17.97 eV and
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17.69 eV for the equatorial and axial sites respectively. At the surface, type c sites are 

1.51 eV more stable than axial type a sites. The difference in surface and bulk 

oxygen vacancy stabilities is greatest in the surface plane. Type b oxygen vacancy 

formation energies pass through a maximum at plane 3 (about 8 A  below the surface) 

and at plane 6  (about 20  A  below the surface) they become identical to type c oxygen 

vacancies, so that bulk behaviour is reached. In the second and third planes the 

concentration ratio of oxygen vacancies in the a and c sites is about 1/10 and at plane 

4 the relative stability of vacancies in equatorial and axial positions changes over. 

Thus over the first four planes (about 12 A ) the population of oxygen vacancies will 

be much greater in the Cu02 planes than in the bulk. The depth over which the 

surface defect populations are different from the bulk is much less than the {100} 

surface of La2Cu04 and this is attributed to the difference in relaxation at these two 

surfaces (see Chapter 5).

The structures of the {001} surfaces in these two materials are markedly 

different and have been discussed in Chapter 5. At the {001} surface of La2Cu04, 

there are two different oxygen sites and these are equatorial and axial. The variation 

in oxygen vacancy formation energies is given in figure 6.4. The difference between 

equatorial and axial sites seen for the bulk is apparent for all but the surface axial 

oxygen. From figure 6.4, only the surface plane is significantly different from the 

bulk, probably because this surface does not relax appreciably from a simple bulk 

termination.

The most stable {001} surface of Nd2Cu04 terminates in a Cu02 plane. The 

density of ions in this surface plane is half that in the bulk because the surface has 

been reconstructed to remove the perpendicular dipole (Chapter 5). By inspection of 

the relaxed positions of the oxygen ions at this surface, it is possible to identify two 

different sites in the first oxygen plane and four different sites in subsequent planes. 

Thus for a full investigation of oxygen vacancy stabilities over, for example, the first
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5 planes (about 11 A ), 18 calculations would be required. The number of calculations 

required, however, may be reduced because there are essentially two types of oxygen, 

those that are equatorial and those that are axial to the Cu02 planes. Thus to 

investigate the change in vacancy formation energy with depth, sites were chosen 

which only differed in their perpendicular distance from the surface. The variation of 

oxygen vacancy formation energy with depth from the {001} surface of Nd2Cu04 is 

shown in figure 6.5. The equatorial oxygen vacancy with the lowest formation energy 

is at the surface. The surface axial oxygen vacancy is highest in energy and at the 

axial sites below the surface the vacancy energy does not vary appreciably. Bulk 

behaviour, which is achieved in part when axial vacancies are more stable than 

equatorial ones, is not reached even at about 16 A  below the surface. This surface is 

different from the other three because it has been reconstructed. Surface relaxation 

leads to a large shift (5.93 V) in the Madelung potential with respect to the calculated 

bulk value. Previous work on point defect energies near planar defects oriented along 

polar directions of a crystal has been confined to the {311 }/[001] NiO grain boundary 

(233). The calculated shift in the Madelung potential was 0.95 V and this is 

significantly lower than that reported here. Defect formation energies did not 

converge until the eighth plane (about 12 A ) below the boundaiy. In view of the 

greater complexity of the structure and consequent relaxation of the {001} surface, it 

is reasonable to expect that the effect of the surface will extend over a greater depth 

than the grain boundary in NiO.

The variation of oxygen vacancy formation energies with depth is different for 

each of the surfaces. At the {100} surfaces, oxygen vacancies will be concentrated in 

the Cu02 planes and consequently disrupt intergranular conductivity. At the {001} 

surface of La2Cu04, the vacancy formation energies are only significantly different 

from their bulk values at surface axial oxygen sites. Therefore, conductivity at this
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surface will be similar to that in the bulk. In contrast, the conductivity parallel to the 

{001} surface of Nd2Cu04 differ from that in the bulk over a distance of at least 

16 A  because the relative stabilities of oxygen vacancies have not converged to their 

bulk values.

6.33  Oxygen Interstitial Formation Energies

Experimental work (234) indicates that doubly charged oxygen interstitials are 

more stable in the bulk than singly charged ones. This has been confirmed by 

Mackrodt and Allan (228). Catlow et al. (235) investigated the relative stabilities of 

singly charged and doubly charged oxygen molecules and interstitials in the bulk of 

La2Cu04- They also found that excess oxygen will be doubly charged and 

incorporated at bulk interstitial sites. In this section, results are presented on the 

formation energies of both singly and doubly charged interstitials over the first four 

sites at each of the four surfaces. The relative stabilities of these defects can be 

calculated once the hole formation energies are known and these are given in the next 

section.

The interstitials were introduced at sites that are occupied in the ’non-Cu02’ 

plane of the other cuprate (figure 6.6). At the {001} surfaces of these cuprates the 

outermost interstitial was introduced above the terminating plane, whereas at the 

{100} surfaces the interstitial site was in this plane.

The energies of doubly and singly charged oxygen interstitials at the {100} 

surface of La2Cu04 are given in tables 6.4 and 6.5. Also included in this table are the 

distances moved by the interstitials on relaxation. Both the singly and doubly charged 

interstitial in the uppermost plane of this surface move appreciably out of the surface 

by 2.6 A and 1.6 A  respectively. The doubly charged oxygen interstitial in the second 

plane moves by 1.4 A  which is much greater than that of the singly charged interstitial
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Table 6.4: Energies and relaxed coordinates of divalent
oxygen interstitials at the {100} surface of La2CuC>4

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A )

1 -15.00 -1.27 0.00 0.95

2 -14.58 -1.37 0.110.34

3 -13.33 -0.310.00 0.34

4 -12.91 0.08 0.00 0.31

bulk -13.00 -

Table 6.5: Energies and relaxed coordinates of monovalent 
oxygen interstitials at the {100} surface of La2Cu04

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A)

1 -2.86 -1.68 0.00 1.02

2 0.04 0.23 0.000.19

3 -0.84 0.34 0.000.27

4 -0.33 0.08 0.000.27

bulk -0.59 -

* with respect to unrelaxed coordinates of 0.0 0.0 0.0

Note: the x direction is perpendicular to the surface and
and increases with increasing distance into the bulk



159

(0.3 A ). The interstitials in the third and fourth planes below the surface move by less 

than 0.5A. As the doubly charged interstitial is moved further into the bulk, the 

formation energy increases. Thus, at the surface both singly and doubly charged 

oxygen interstitials are more stable than in the bulk.

The energies of singly and doubly charged oxygen interstitials at the {100} 

surface of Nd2Cu04 are given in table 6.6 and 6.7 along with the corresponding 

relaxed coordinates. As with the {100} surface of La2Cu04 the calculated energies of 

the singly and doubly charged interstitial at the surface are lower than in the 

sub-surface region and in the bulk. However, the relaxation of these surface 

interstitials is much less and therefore the increased stability over sub-surface 

substitution is reduced compared to La2Cu04.

The energies of singly and doubly charged oxygen interstitials at the {001} 

surface of La2Cu04 are given in table 6.8. The greatest relaxation is experienced by 

those oxygen interstitials that are introduced above the surface LaO plane. However, 

on relaxation these oxygens move by less than 0 .2  A  into the bulk. Relaxed 

coordinates for interstitials below the surface are almost identical to the unrelaxed 

coordinates. As these are equivalent to the equilibrium bulk interstitial sites, 

sub-surface oxygen is in the same environment as in the bulk. Note that similar 

behaviour is observed for oxygen vacancies.

The energies of singly and doubly charged oxygen interstitials at the {001} 

surface of Nd2Cu04 are given in tables 6.9 and 6.10. The doubly charged oxygen 

interstitial is unstable above the surface. Just below the surface, the stability of the 

oxygen interstitial is much greater than that in the bulk and the enhanced stability is 

due to the large relaxation from this position. At the third and fourth interstitial sites 

the doubly charged interstitials do not relax appreciably although their stabilities are 

lower than in the bulk. The energy of the singly charged oxygen interstitial is lower 

at the surface than in the bulk and the ion relaxes towards the surface. This is
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Table 6.6: Energies and relaxed coordinates of divalent
oxygen interstitials at the {100} surface of Nd2Cu04

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A)

1 -15.42 -0.05 0.04 0.20

2 -13.99 -0.12-0.04 -0.43

3 -14.32 -0.16 0.04 0.28

4 -14.09 -0.08 0.00 0.28

bulk -14.35 -

Table 6.7: Energies and relaxed coordinates of monovalent 
oxygen interstitials at the {100} surface of Nd2Cu04

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A )

1 -2.39 -0.79 0.00 0.28

2 -1.52 0.00 0.04 0.39

3 -2.03 -0.16 0.04 0.24

4 -1.82 -0.08 0.04 0.39

bulk -1.92 -

* with respect to unrelaxed coordinates of 0.0 0.0 0.0

Note: the x direction is perpendicular to the surface and
and increases with increasing distance into the bulk
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Table 6.8: Energies of divalent and monovalent oxygen 
interstitials at the {100} surface of La2Cu04

Plane Divalent Oxygen 
Energy(eV)

Monovalent Oxygen 
Energy(eV)

1 -12.10 -1.43

2 -12.93 -0.69

3 -12.81 -0.49

4 -12.93 -0.53

bulk -13.00 -0.56
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Table 6.9: Energies and relaxed coordinates of divalent
oxygen interstitials at the {001} surface of Nd2Cu04

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A )

1 -

2 -16.50 -1.50 0.04-1.34

3 -13.65 0.02 0.00 0.04

4 -13.48 0.13 0.02 0.04

bulk -14.35

Table 6.10: Energies and relaxed coordinates of monovalent 
oxygen interstitials at the {001} surface of Nd2Cu04

Plane Interstitial
Energy(eV)

Relaxed Coordinates*
(A)

1 -3.29 0.68 1.22 1.03

2 -5.20 -1.79 -0.03-1.63

3 -2.21 0.07 0.02 -0.03

4 -1.68 0.33 0.04 -0.04

bulk -1.92

* with respect to unrelaxed coordinates of 0.0 0.0 0.0

Note: the x direction is perpendicular to the surface and
and increases with increasing distance into the bulk
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probably due to the repulsion of the image charge and might explain why no stable 

minimum was found for the doubly charged interstitial at this position.

To summarise the section on fundamental lattice disorder, it is predicted that 

the properties of the {001} surface of La2Cu^4 are very similar to the bulk. In 

contrast, the other three surfaces show significantly different behaviour to that in the 

bulk over a depth of at least 10 A. Defect behaviour is different at each surface and 

also to that observed at surfaces of binary oxides (225). Thus the anisotropy of 

electrical properties at different tunnel junctions, for example, will not only be 

controlled by the orientation of the crystal (236) but also by the different defect 

concentrations arising from different defect formation energies.

6.4 Surface Electronic Defects

The calculations on electronic defects were performed by modelling the 

electron as a Cu1+ substitutional and the holes as either a Cu3+ or O1' substitutional. 

For each of the substitutional ions two calculations were performed, one to model it 

either as a small and the other as a large polaron. These correspond to the electronic 

defect being localised at one site or being localised over nearest neighbour lattice sites 

respectively. The first calculation is performed by allowing both cores and shells to 

relax, whereas the second allows only shell relaxation (167).

The formation energy of the small polaron is estimated by adding or 

subtracting the appropriate ionisation energy from the energy calculated by the 

simulation program. For the formation of the defect electron this will be the second 

ionisation potential of copper, whereas for the defect hole this will either be the 

second electron affinity of oxygen or the third ionisation potential of copper.

In calculating the formation energies of the large polarons, the method
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proposed by Mackrodt (167) is used. In this approach, half the value of the 

appropriate band width is subtracted from the lattice energy term and the ionisation 

energy. For both ternary oxides the appropriate band widths are taken from Allan and 

Mackrodt (224) who estimated these values from the electronic structure calculations 

on La2Cu04 of Mattheiss (237), Yu et al. (238) and Bullett and Dawson (239). It is 

assumed that they can be applied to the surface. These parameters are given in table 

6.11.

The results for the {100} and {001} surfaces of La2Cu04 are compared to 

those calculated by Allan and Mackrodt (224) for the bulk in table 6.12. At the {001} 

surface the large and small polaron copper holes are estimated to have the same 

energy. Small polaron holes on oxygen are less favoured than large polaron holes by 

0.6 and 0.1 eV for the uppermost axial and equatorial oxygen sites respectively. Small 

polaron electrons are calculated to be more stable than large polaron electrons by 1.1 

eV. These calculations also indicate that holes rather than electrons are favoured at 

copper sites at this surface. Similar results were obtained by Allan and Mackrodt

(224). Copper and axial oxygen holes and copper electrons are more favourable at the 

{001} surface than in the bulk although holes on equatorial oxygens are less favoured.

The electronic defect formation energies for the {100} surface of La2Cu04 

show marked differences from the bulk and the {001} surface (table 6.12). The large 

polaron energy of copper holes is estimated to be 0.9 eV less stable than that for the 

small polaron but the differences between large and small polaron energies at oxygen 

sites are much less than in the bulk. Axial surface oxygen small polaron holes are of 

comparable stability to those on copper. In contrast to the bulk and the {001} surface, 

the formation of small polaron electrons on copper sites are more favourable than 

holes.

The differences between the two surfaces is attributed to differences in their 

structures and relaxation behaviour. Relaxation at the {001} surface leads to a
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Table 6.11: Energies required to calculate defect 
energies

Parameter Energy (eV)

Copper ionisation potentials

Cu(H) 20.29

Cu(HD 36.83

Oxygen ionisation potentials

0 2-(I) -9.2

o 2- ^ ) 0.2

Valence band contribution 
to large polaron energies

Cu 1.4

O (axial) 1.7

O (equatorial) 2.5

Conduction band contribution 
to large polaron energies

Cu 1.0
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Table 6.12: Calculated electron/hole energies (eV) at the {100} 
and at the {001} surfaces and in the bulk of La2Cu04

Type bulk* {001} {100}

Valence band holes
Cu (1) 1.5 1.2 3.7

(s) 1.7 1.2 2.8
O (axial) (1) 3.0 2.2 2.8

(s) 3.8 2.8 3.0
O (equatorial) (1) 3.3 3.6 3.4 (type b)

(s) 3.9 3.7 3.5
O (equatorial) (1) 2.9 (type c)

(s) 3.1
Conduction band electrons
cu a) 2.8 3.4 0.1

(S) 2.8 2.3 0.2
* from reference 224

Table 6.13: Calculated electron/hole energies (eV) at the {100} 
and at the {001} surfaces and in the bulk of Nd2Cu04

Type bulk {001} {100}
Valence band holes
Cu fl) >4.3* 5.7 5.6

(s) 4.3* 1.7 3.4
O (axial) (1) 3.1 4.0 0.8

(s) 4.0 4.2 3.3
O (equatorial) (1) 3.1* 4.0 3.3 (type b)

(s) 4.2* 3.0 3.7
O (equatorial) (1) 3.1 (type c)

(s) 3.1
Conduction band electrons
Cu (1) >-0.9* -0.2 -1.3

(s) -0.9* -2.3 -2.0
* from reference 140

(1) large polaron 
(s) small polaron
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decrease in the surface energy of 0.5 Jm"2. This relaxation lowers the Madelung site 

energy between surface and bulk copper sites by 0.98 eV. The relaxation at the {100} 

surface is much greater and the difference in the surface energy of a simple bulk 

termination and the relaxed surface is 3.2 Jm"2. This relaxation increases the surface 

copper site Madelung energy with respect to the bulk by 3.18 eV. Thus from purely 

electrostatic arguments the oxidation of copper sites at the {001} surface should be 

more facile than at the {100} surface. However, as noted in section 6.2, relaxation 

around the defect also contributes to a lowering of the defect formation energies and 

therefore the most favourable sites cannot necessarily be distinguished by inspecting 

the Madelung energies of the pure relaxed surface.

The corresponding formation energies at the {100} and {001} surfaces of 

Nd2Cu04 are given in table 6.13 and compared with the results of Allan et al. (140). 

At the {001} surface, small polaron copper holes are more stable than large polaron 

holes. The most stable oxygen holes are predicted to occupy surface equatorial 

positions and be small polarons. However, these are less stable than small polaron 

copper holes. It is also predicted that electrons at copper sites are small polarons and 

are more favourable than copper holes. Comparing the results with those of Allan et 

al. (140), holes at this surface are more stable at copper sites, whereas in the bulk they 

are more stable at oxygen sites. Both holes and electrons are more stable at this 

surface than in the bulk.

The electronic defect formation energies at the {100} surface are similar to 

those in the bulk (34). Small polaron holes are more stable at copper sites and large 

polaron holes at axial oxygen sites; the latter being more stable. In common with the 

{001} surface, small polaron electrons are more stable than holes. Both holes and 

electrons are more stable at the {100} surface than in the bulk.

At the {001} and {100} surfaces of Nd2Cu04, the stabilities of holes and 

electrons cannot be ascribed solely to the differences in the surface and bulk
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Madelung energies. At the {100} surface, the Madelung site energy is lower than in 

the bulk by 0.76 eV (table 6.3), favouring negatively charged defects. While electrons 

are more stable at surface copper sites, holes are also more stable at these sites. The 

latter observation is the reverse of what would be predicted from the Madelung site 

energies. At the {001} surface, holes and electrons are also more stable than in the 

bulk. The copper site Madelung energy is higher at this surface (by -2.07 eV) and only 

holes would be expected to be more stable. The differences in the behaviour predicted 

from the Madelung site energies, and the calculated results is attributed to the 

relaxation about the defect.

Once the surface electronic defect formation energies have been calculated, 

surface non-stoichiometry can be investigated. The results are described in the next 

section.

6.5 Defect Stabilities in La2C u 0 4 and Nd2C u 0 4

The defects which charge compensate aliovalent impurities in these materials 

are known (240,241) to control their superconducting properties. Consequently the 

relative stabilities of either positively or negatively charged defects have been 

calculated by determining the energies of the following reactions:

V0" + l/2 0 2(g) = Ox0 + 2h- (6.2)

Oi” = l/2 0 2(g) + 2e’ (6.3)

Oj’ = l/2 0 2(g) + e’ (6.4)

2VM’” + Vcu” + 4 0 x0 = 2 0 2(g) + 8e* (6.5)
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which have associated energies E l, E2, E3 and E4. These are given in table 6.14 for 

the {100} and {001} surfaces and the bulk of La2Cu04 or Nd2Cu04. Although the 

exact concentrations will be influenced by the oxygen partial pressure, the energies 

for each reaction at different surfaces and in the bulk are directly comparable.

Holes are predicted to be more stable than oxygen vacancies in the bulk of 

La2Cu04 and at the {001} surfaces of La2Cu04 and Nd2Cu04. In contrast, the reverse 

is true for the {100} surfaces of both materials. In the bulk of Nd2Cu04 the 

concentration of holes and oxygen vacancies will be comparable. In view of the 

importance of holes in La2Cu04, E l was determined over the first five planes (about 

8 A) of the {100} surface and it was found that even at this depth the energy was 

higher than the bulk value (0.4 eV at the 5th plane). Thus there will be a greater 

number of oxygen vacancies with respect to holes in the C u02 planes in the surface 

region. Such a near surface structural inhomogeneity could be ’frozen in* during 

sample preparation and have a detrimental effect on conductivity.

E2, in table 6.14, corresponds to the reduction of an oxygen rich lattice. These 

results show that, as with E l, both the relative bulk and surface concentrations of 

defects will be different At the {001} surface of La2Cu04, the reduction of doubly 

charged oxygen interstitials is harder than at the {100} surface although both surfaces 

are more easily reduced than the bulk material. A similar pattern of behaviour is 

predicted for Nd2Cu04 although in this material dissolution of excess oxygen is much 

more facile.

E3, in table 6.14, corresponds to the ease of oxidising a singly charged oxygen 

interstitial at the surface. At the {001} surface of La20uO4 and the {100} surfaces of 

both materials the energy of dissolution of singly charged oxygen interstitials is much 

lower than E2 and, hence, oxygen interstitials will be doubly charged at both the 

surface and in the bulk. At the {001} surface of Nd2Cu04, E2 and E3 are similar and,
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Table 6.14: Calculated stabilities of defects at the {001} and {100} 
surfaces and in the bulk of La2CuC)4 and Nd2Cu04

Reaction bulk*

La2Cu04

{001} {100} bulk

Nd2Cu04

{001} {100}

E l -1.5 -2.4 1.1 0.2 -1.4 3.1

E2 7.7 5.9 3.8 1.1 0.3 -0.2

E3 1.0 0.8 0.7 -1.4 0.5 -2.0

E4 29.1 26.5 9.0 -1.0 - -10.9

* from reference 224
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therefore, the concentration of singly and doubly charged oxygen interstitials will be 

comparable.

E4 corresponds to lattice reduction by loss of oxygen from the perfect lattice 

sites. These results show that in La2Cu04 cation vacancies are much more stable than 

electrons. However, the reverse is true at the {100} surface and in the bulk of 

Nd2Cu04 electrons being more stable than cation vacancies. The stabilities of 

electrons and cation vacancies at the {001} surface of Nd2Cu04 cannot be calculated 

because of the instability of neodymim vacancies.

From these results, negatively charged impurities e.g. CaRE’ (RE=La, Nd) will 

be charge compensated by holes at both {001} surfaces and in the bulk of La2Cu04, 

whereas charge compensation in the other crystal environments will be by oxygen 

vacancies. As discussed above, this will have a detrimental effect on p-type 

conduction at the {100} surface of La2Cu04. Positively charged impurities e.g. CeRE 

(RE=La, Nd) will be charge compensated by oxygen interstitials and cation vacancies 

in La2Cu04 and are therefore not n-type superconductors. In contrast, electrons 

compensate these impurities in Nd2Cu04.

The surface properties of these materials will not only be influenced by the 

type of defects which compensate aliovalent impurities, but also by nature of the 

impurities themselves. This is investigated in the next section by considering both 

impurity segregation and site solution.

6.6 Surface Impurity Substitution and Site Solution

Cation impurities control many of the properties of ceramic oxides. In the case 

of high-Tc materials related to La2Cu04 and Nd2Cu04 they are intimately connected 

with the superconductivity. The influence of surface composition and stoichiometry is 

investigated in two ways. First, the difference in the substitution energies of Mg2+,



172

Ca2+, Sr2+, Ba2+, Ce4+ and Th4+ at surface and bulk rare-earth and copper sites in 

La2Cu04 and Nd2C u04 is calculated. Second the relative importance of mixed site 

solution at copper and rare-earth sites is considered. In the final section of this 

chapter, these results are used to calculate how surface and bulk impurity 

concentrations differ.

6.6.1 Surface and Bulk Substitution Energies

Substitution energies for the impurities at both copper and rare-earth sites at 

each of the surfaces and in the bulk are given in tables 6.15 and 6.16. The substitution 

energies vary significantly between different surfaces and this is because the 

structures and relaxation behaviour of the surfaces are different. In general, for a 

given substitution type the energy increases with increasing ion size. In order to 

compare the substitution energies, an interaction energy is defined, which is the 

difference in energy in substituting the defect at a given site at the surface (E SIj r f a c e )  

and in the bulk (E BULk ):

ElNT =  ^SURFACE “ E BULK (6*6)

If this energy is negative then at equilibrium the defect will segregate to a given 

surface site, although for aliovalent defects their surface concentration is also affected 

by the space charge.

The interaction energies at copper sites for divalent impurities are plotted 

against host-impurity ion size mismatch in figures 6.7 and 6.8. Those for Mg2+ are 

small at each surface which is to be expected because the ion sizes of Mg2+ and Cu2+ 

are similar. For the other three divalent impurities the interaction energies at the 

{100) surfaces of both cuprates and the {001} surface of Nd2Cu04 are exothermic
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Table 6.15: Substitution energies at copper sites at 
the {100), the {001) and in the bulk of La2Cu04

Cation {100} {001} bulk

Mg 1.0 1.6 1.5

Ca 5.1 10.4 10.3

Sr 7.0 15.8 16.4

Ba 8.4 20.3 22.6

Ce -52.1 -46.2 -45.7

Th -47.3 -39.7 -39.2

Table 6.16: Substitution energies at copper sites at 
the {100), the {001} and in the bulk of Nd2Cu04

Cation {100} {001} bulk

Mg 1.0 1.3 1.1

Ca 4.2 4.7 6.4

Sr 5.6 6.2 9.1

Ba 6.8 6.6 12.1

Ce -48.8 -48.4 -44.4

Th -45.9 -41.3 -39.5
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and increase with increasing ion size. This is in accord with an increase in interaction 

energy with increasing ion size for the segregation of Ca2+, Sr2+ and Ba2+ at the 

{100} surface of MgO and Na+ and K+ at the {111} surface of Li20  (242). In 

contrast, the calculated interaction energy of Ca2+ at the {001} surface is identical to 

that of Mg2+ and slightly endothermic, whereas those for Sr2* and Ba2+ are 

exothermic. This difference between the trends in interaction energies at these 

surfaces can be understood by considering their structures. As discussed in Chapter 5, 

the {001} surface of La2Cu04 terminates in a layer of LaO and relaxation about 

sub-surface copper is restricted. The terminating planes of the other surfaces all 

contain copper and the possible relaxation about the divalent impurities is much 

greater. Thus, the crystal environment of the copper site of {001} surface of La2Cu04 

is markedly different from that at the other three surfaces. When Mg2+ and Ca2+ are 

substituted at surface sites the relaxation is restricted and similar to that in the bulk. 

Consequently their interaction energies are close to zero. For Si2+ and Ba2+, 

relaxation is greater at the surface because they are much larger than Cu2+ and the 

interaction energies are exothermic.

The interaction energies at rare-earth sites for divalent impurities are plotted 

against host-impurity ion size mismatch in figures 6.9 and 6.10. The interaction 

energies at none of the surfaces vary monotonically but as the difference in the radii 

of the divalent cation and the rare-earth cation increases the interaction energy 

becomes more exothermic. The ionic radii of the Ca2+, Nd3+ and La3+ cations are 

similar (their ionic radii are 1.03, 1.17 and 1.12 A  respectively (155)) and the 

relaxation arising from the relief of elastic strain at the surface will be small. In 

contrast, the difference in the radii of Mg2+, Sr2+ and Ba2+ (their ionic radii 0.68, 1.33 

and 1.49 respectively A  (18)), compared with Nd3+ and La3+ is more appreciable. The 

strain induced by substituting these cations at rare earth sites in the bulk is thus 

greater than that for Ca2+. The relief of this strain is more effective at the surface than
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in the bulk and, therefore, the interaction energies of Mg2+ and Ba2+ and to a lesser 

extend Si2+ will be more exothermic than those of Ca2+. Note that the magnitude of 

the interaction energies are also influenced by the image charge interaction, surface 

relaxation and Madelung site energy and these are different at each surface.

The interaction energies of Ce4* and Th4+ cations at each of the four surfaces 

are presented in table 6.17. At both the {100} surfaces and at the {001} surface of 

La2Cu04 the interaction energies at lanthanum sites of Ce4+ and Th4* are positive 

indicating that they will not segregate to these surface sites. In contrast, interaction 

energies are exothermic for neodymium site substitution at the {001} surface of 

Nd2Cu04 and at copper sites at each of the four surfaces. This behaviour cannot be 

explained by just the Madelung site potentials (table 6.1) and, therefore, it must be 

due to details of the relaxation about the defect

By themselves the interaction energies can be used to determine whether an 

ion will segregate from a given bulk to surface site. For binary oxides where only one 

site is available this information can be used to determine the degree of segregation of 

uncharged impurities and this was done for the specific case of alkaline earths in 

sapphire in Chapter 4 (note that in this case it was assumed that there was only one 

surface site and no account of kink and step sites was taken). For ternary oxides, the 

possibility of solution at different bulk cation sites (243) and surface cation sites and 

must also be considered. This is discussed in the next section.

6.6.2 Energetics of Solution in La2C u 0 4 and Nd2C u 0 4

The divalent cations Ca2+, Sr2+, Ba2+, and the tetravalent cations Ce4+ and 

Th4+ substitute at rare earth sites in the bulk of La2Cu04 and Nd2Cu04. When 

La2Cu04 is doped with an appropriate concentration of the divalent impurities it is 

rendered a p-type superconductor. In contrast, Nd2Cu04 is an n-type superconductor
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Table 6.17: Interaction energies of cerium and thorium at 
copper and rare-earth sites of La2Cu04 and Nd2Cu04 
(energies in eV)

La2Cu04 Nd2CuQ4

{001} {100} {001} {100}

Cu La Cu La Cu La Cu La

Ce -0.5 0.4 -6.4 0.0 -4.4 -0.8 -5.1 0.3

Th i © o 4̂ -8.1 0.4 -6.2 -0.6 -1.7 0.1
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when doped with appropriate concentrations of the tetravalent cations. The difference 

in behaviour between these two cuprates can be understood by considering the charge 

compensating impurities and this was done in section 6.5. Doping either ternary oxide 

with Mg2+ leads to substitution at copper sites and this disrupts the periodic potential 

of the Cu02 planes thereby disrupting high-Tc behaviour (244).

Solution at copper sites may be represented by the defect equations

XO + Cuxcu = X*Cu + Cu*cu + Ox0 (6.7)

for divalent cations and for tetravalent cations compensated by either electrons:

X 0 2 + CuxCu = Xqj" + 2e’ + 1/20 2 + Cuxcu + Oxq

(6.8)

or cation vacancies:

X 0 2 + CuxCu = X qu ’ + CuxCu + Oxq + 1/4RE2Cu04

+ 1/2Vr e ” ’ + 1/2VCu”  (6.9)

with corresponding energies E5, E6a and E6b respectively. The analogous equations 

for solution at lanthanum or neodymium (RE=La, Nd) sites are:

XO + RExre  + l/4 0 2(g) = XRE’ + h- + RExre  + 3/20x0

(6.10)

or

XO + RExre  = XRE* + 1/2V0" + RExre  + 3/20x0
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(6.11)

for divalent cations with charge compensating defects as holes or oxygen vacancies 

respectively and for tetravalent cations compensated by either electrons:

X 0 2 + RExre  = XRE + e’ + RExre  + 'SflQpQ + l/4 0 2

(6.12)

or cation vacancies:

X 0 2 + RExre  = XRE + RExre  + 3/20*0 + 1/4Vr e ” ’

+ l/SVcu”  + 1/8RE2Cu04 (6.13)

for tetravalent cations with corresponding energies E7a, E7b, E8a E8b. In order to 

calculate the energies of E5 to E8 the lattice energies of the constituent oxides are 

required and these are given in table 6.18. The solution energies of divalent impurities 

are given in tables 6.19 and 6.20.

Mg2+ is the only divalent cation that has been considered that will dissolve at 

bulk and surface copper sites in La2Cu04 (table 6.19). The other three divalent 

cations will dissolve at lanthanum sites in the bulk and at the (001) surface of 

La2Cu04. In agreement with the calculations on surface stoichiometry, the behaviour 

of impurities is different at the {100} surface than in the bulk and the {001} surface 

because Ca2+, Sr2+ and Ba2+ will dissolve at copper sites.

The results presented in table 6.20 demonstrate that there will be differences in 

the mode of solution at the {001} and {100} surfaces and the bulk of Nd2Cu04. In the 

bulk Ca2+, Sr2+ and Ba2+ will dissolve at neodymium sites, whereas, Mg2+ is 

predicted to substitute at both neodymium and copper sites. At the {001} surface Mg
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Table 6.18: Calculated lattice 
energies of binaiy oxides 
(energies in eV)

Oxide Lattice Energy

MgO -42.03

CaO -37.14

SiO -34.83

BaO -32.67

C e02 -109.29

Th02 -104.97

La20 3 -130.10

Nd20 3 -137.42

CuO - 42.75*

CuO -41.14**

* For calculations in La2Cu04

** For calculations in Nd2Cu04
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Table 6.19: Calculated bulk and surface solution 
energies (eV) of divalent impurities in La2CuC)4

bulk {001} {100}
Impurity

E5 E7a E5 E7a E5 E7b

Mg 0.8 2.4 0.9 1.4 0.3 1.6

Ca 4.0 0.3 4.8 0.1 -0.5 0.0

Sr 7.3 -0.3 7.8 -0.9 -0.9 -0.5

Ba 11.0 -0.1 10.2 -1.6 -1.7 -1.1

Table 6.20: Calculated bulk and surface solution 
energies (eV) of divalent impurities in Nd2Cu04

Impurity
bulk 

E5 E7b

{001} 

E5 E7a

{100} 

E5 E7b

Mg 2.0 2.2 2.2 0.5 1.9 -1.0

Ca 2.4 1.1 0 1 p Ul 0.2 -1.0

Sr 2.8 1.3 -0.2 -0.5 i 0 1 o

Ba 3.6 2.3 -1.9 -2.2 -1.7 -1.4
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and Ca dissolve exclusively at neodymium sites. Sr2"*" and Ba2+ will also dissolve at 

neodymium sites but some copper site solution can be expected. A similar trend is 

expected at the {100} surface, although Ba2+ substitution at copper sites is more 

favoured at neodymium sites.

A comparison of results for the bulk of the two materials shows that the 

solution energy at a given site varies systematically with ionic radius i.e. at copper 

sites the solution energies increase with increasing ion size and at lanthanum or 

neodymium sites the solution energies decrease and then increase. Similar behaviour 

has also been observed for bulk cation solution energies at copper (245) and barium 

(246) sites in YBa2Cu307. The trends in the solution energies at each of the {100} 

and {001} surfaces of the cuprates are different from each other and the bulk. This is 

because the surface solution energies depend not only on the impurity substitution 

energy, but also the nature of the charge compensating defect These in turn are 

related to the structure and relaxation behaviour.

The solution energies of Ce4+ and Th4+ in the bulk and at the four surfaces are 

given in table 6.21 and 6.22. In the bulk and at the {001} surface of La2Cu04, Ce4+ 

and Th4+ will dissolve exclusively at lanthanum sites because the ionic sizes of Ce4+ 

and Th4+ (155) are much closer to those of lanthanum than copper. However, at the 

{100} surface the impurities relax appreciably, and substitution at copper sites can be 

expected.

Solution of tetravalent impurities in the bulk and at the two surfaces of 

Nd2Cu04 will only occur at neodymium sites (table 6.22). Note that the solution 

energy is also reduced at the copper sites of both surfaces but solution at neodymium 

sites is still more favourable.

To summarise this section, two aspects of cation impurity distribution in two 

ternary oxides have been described. These are the difference in substituting the defect
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Table 6.21: Calculated bulk and surface solution 
energies (eV) of quaternary impurities in La2Cu04

Impurity
bulk {001} {100}

E6b E8b E6b E8b E6b E8b

Ce 7.8 2.3 8.0 3.2 0.6 1.9

Th 10.0 2.1 10.2 2.9 1.1 2.1

Table 6.22: Calculated bulk and surface solution 
energies (eV) of quaternary impurities in Nd2CuC>4

bulk (001) {100}
Impurity

E6a E8a E6a E8a E6a E8a

Ce 10.9 1.1 3.6 -1.1 3.8 0.3

Th 10.8 1.2 1.8 0.8 6.9 0.2
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at the surface and in the bulk and surface and bulk solution energies. A defect will 

segregate if the interaction energy between a given surface and bulk site is negative. 

For example, Ba2+ at the {001} surface of La2Cu04 (Figure 6.9). Segregation can also 

occur when the energy required to dissolve it at either site at the surface is less than 

that in the bulk. For example, Ba2+ at the (100) surface of Nd2Cu04 (table 6.20). 

Isovalent surface impurity concentrations can be estimated from these results using 

the McLean isotherm (149). This can also be done when the impurity is aliovalent, 

provided that the surface plane is charge neutral. This charge neutrality assumption is 

valid when either the impurities form neutral clusters or when the formation energies 

of impurities and charge compensating defects are the same (247). The binding 

energies of the impurity clusters are small in the bulk (224) and also at the surface. 

Therefore, either the charge neutrality condition must be relaxed or defect formation 

energies must be compared. Both approaches are discussed in the next section.

6.7 Space Charge Effects

In this section, the way in which the space charge influences surface 

segregation is discussed. The space charge does not effect isovalent impurity 

segregation e.g. MgCux at the {001} surface of La2Cu04. However, where solution at 

two sites is favoured, e.g. SrCux and SrLa’ at the {100} surface of La2Cu04 then it will 

indirectly change impurity concentrations. The space charge develops because the 

constraint of charge neutrality which exists in each unit cell in the bulk is relaxed at 

the surface. This condition still applies over the surface region (which might extend 

over several hundred angstroms (248)), but within a given unit cell a greater 

concentration of a defect may be present if it has a lower formation energy. For the 

case of a solid where Schottky disorder (i.e. the majority defects are cation and anion 

vacancies) predominates this can be illustrated as follows. Suppose the free energy
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necessary to form a cation vacancy is less than that required to form an anion 

vacancy. Then, at a temperature where thermal equilibrium can be achieved, there 

will be a tendency to form an excess of cation vacancies and this will result in a 

region of negative space charge below the surface. The excess concentration of 

cations will be deposited at the surface which thus acts as a vacancy source (The 

surface composition might alternatively be described as having an excess of anion 

vacancies although this is exactly the same as an excess of cations). At equilibrium 

then, a dipole region will exist at the surface with an associated electric field gradient 

This potential difference changes the innate formation free energies of the vacancies 

into effective formation energies in such a way that the bulk of the crystal is 

electrically neutral. The charge distribution that develops will retard the further 

formation of cation vacancies while enhancing the formation of anion vacancies in the 

space charge region.

The potential arising from a near-surface inhomogeneous defect distribution 

has been calculated by Kliewer and Koehler (249) for Schottky defects in M+X \ Yan 

et al. (250) extended their work to include dipole interactions and defect segregation. 

In what follows, the approach of Kliewer and Koehler is summarised and the way in 

which it can be used to investigate space charge effects in non-stoichiometric 

compounds discussed.

Consider an electrically neutral crystal having free {100} surfaces at x=0 and 

x=2L with bidimensional periodicity in the surface plane and assume that the 

potential <J>(x) arising from a distribution of Schottky defects in NaCl can be described 

by Poisson’s equation for a medium with static dielectric constant e. The boundary 

conditions for the potential are:

<j> = 0 at x = 0 and x = 2L (6.14)
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and

d<j>/dx = 0 at x = L (6.15)

Boundary condition 6.15 follows immediately from symmetry and expresses the fact 

that, since the entire crystal is neutral, each half will also be neutral. Thus, only the 

section of the crystal from x=0 to x=L need be considered. It is further assumed that 

the system is in a state of thermal equilibrium. That is, the defects all have sufficiently 

high mobilities to reach the state predicted by the minimisation of the free energy of 

the system. At low temperatures this assumption has limited validity as pointed out by 

Kliewer (251) and Yan et al. (252).

There are three types of defects which may arise. These are anion vacancies, 

cation vacancies and bound vacancy pairs which arise from the Coulombic attraction 

between oppositely charged species. The pairs are considered to have a binding 

energy B when they are on nearest neighbour sites and otherwise no binding energy, 

hence, ignoring the long range effects of the Coulombic interaction.

The free energy per unit area of the crystal from x=0 to x=L is:

where n+(x) is the density of cations at a distance x below the surface, n_(x) the 

density of anion vacancies, nB(x) the density of bound pairs, F(x) the corresponding 

free energies and Sc the configurational entropy. The charge density p(x) is given by.

F = J0L [ n+(x)F+ + n.(x)F + nB(x)(F* + F  - B)

+ l /2p(x)4>(x) ] - TSC (6.16)

p(x) = e [ n.(x) - n+(x)] (6.17)
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and is related to <j)(x) by Poisson’s equation:

d 2<}>(x)/dx2 =  -4 ttp(x )/€ (6 .1 8 )

Kliewer and Koehler minimised the free energy (equation 6.16) to obtain the 

defect densities at temperature T. They found that when the concentration of 

vacancies and bound pairs are much less than one the defect densities are given by:

n+(x) = N exp{-(F+ - e(J>(x))/kT) (6.19)

n (x) = N exp {-(F  + e<|>(x))/kT} (6.20)

nB(x) = N ^expf-OF* + F  - B)/kT} (6.21)

where N is the number of lattice sites per unit volume and zn the number of nearest

unlike neighbours of an ion. Therefore, substituting 6.8 and 6.9 into 6.6:

d2<{>(x)/dx2 = 4jceN/e [ exp{-(F+ - e(J>(x))/kT}

- exp{-(F" + e(J)(x))/kT} ] (6.22)

Now as discussed above, the charge density on a plane in the bulk is zero because of 

the charge neutrality condition and, therefore, the bulk potential is given by:

60(0°) = 1/2 (F* - F ) (6.23)
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Kliewer and Koehler further showed that by defining:

z(x) = (e<j)(x) - e<j)(«>)/kT (6.24)

Poisson’s equation can be rewritten as:

d2z(x)/dx2 = k2 sinh z(x) (6.25)

with

k2 = 87cNe2/ekT exp { -(F* + F‘)/2kT) (6.26)

When kL »  1 then z is given by:

z(x) = 4tanh_1 {e‘ŝ  tanh(zo/4)} (6.27)

where z = z0 at x = 0 and s = k x . Thus the potential, zero at the surface becomes <}>(«>) 

in the bulk of the crystal.

Of central importance to this derivation are the defect formation energies. 

They not only determine the bulk potential but also the concentration of defects in the 

space charge region. For Schottky and Frenkel defects the free energies can be 

calculated by the methods described in Chapter 2. In non-stoichiometric crystals, the 

energies of electronic defects can also be calculated (see section 6.4), but their 

relationship to the defect formation energies of equation 6.16 is ambiguous. This 

problem can be resolved by relating the space charge to the interaction energies (178) 

of the defects responsible for non-stoichiometry. The added advantage of this 

definition is that a two site segregation model is incorporated in the treatment of the



190

space charge.

The defect with the greatest interaction energy forms in excess at the surface 

and the sub-surface region is rich in the charge compensating defect. For low bulk 

impurity concentrations, n(<»), a reasonable measure of the thickness of the space 

charge region is given by:

where e is the electronic charge. This equation is valid when the defect concentrations 

are much less than one. Using the computed values for the static dielectric constant, €, 

of 198.0 (224) and 24.3 for La2Cu04 and Nd2Cu04 respectively the screening length 

can be determined for a given bulk concentration. For bulk concentrations of 100 ppm 

and 1000 ppm and a temperature of 1000 K the corresponding screening lengths for 

La2Cu04 are 1.5 x 10"8 m and 4.7 x 10"9 m and for Nd2Cu04 are 5.14 x 10'9 m and 

1.62 xlO'9 m. Furthermore, the boundary acts as a defect sourec (178) when the ratio 

of defects in the space charge region in the absence of the surface is much less than 

the surface defect concentration. This can be quantified by defining a parameter A 

such that:

where FINT‘'' and Fjnt- are the interaction energies of cation and anion vacancies and 

Ns is the density of sites on the surface. When A < 1, the boundary acts as a defect 

source.

Mackrodt and Allan (228) have shown that the majority defects in the oxygen 

rich materials are holes and doubly charged oxygen interstitials. The interaction 

energies at the {100) and {001} surfaces of Nd2Cu04 are -0.9 and -2.6 eV for holes

k ' 1 = (ekT/e287m(<»))1/2 (6.28)

A -  K~1(N/Ns)exp[(FjNj + + F j^ j’j^kT] (6.29)
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and -1.1 and -2.2 eV for doubly charged oxygen interstitials respectively. Thus, the 

{100} surface will be negatively charged with an excess of oxygen interstitials and 

this will be compensated by an excess of holes in the sub-surface region. In contrast, 

the {001} surface will be positively charged with holes. In both cases A < 1 and, 

therefore, the boundary will act as an infinite source of oxygen interstitials and holes.

The interaction energies of holes and doubly charged oxygen interstitial 

energies at the {001} surface of La2Cu04 are -0.3 and 0.9 eV respectively. Thus in 

this case the surface will be positively charged with a sub-surface excess of oxygen 

interstitials and holes. However, the surface will not act as a defect sink because A >

1. Thus both the potential arising from the space charge and the difference in the bulk 

and surface concentrations will be small.

At the {100} surface of La2Cu04 holes are less stable than oxygen vacancies. 

The interaction energy is defined as the energy required to exsolve a hole from the 

bulk and dissolve an oxygen vacancy at the surface. The interaction energies for holes 

and doubly charged oxygen interstitials are 0.8 and -2.0 eV respectively. This surface 

will be negatively charged with an excess of oxygen interstitials and the space charge 

region will be positively charged and can be subdivided into two regions. Near the 

surface (the first 8 A) the ratio of the concentration oxygen vacancies to holes will be 

greater than that in the bulk, whereas in the remainder of the space charge region the 

concentration of oxygen vacancies will be negligible. As the value of A is 0.07 the 

surface will act as a defect sink and, therefore, the increased concentration of oxygen 

vacancies in the Cu02 planes will be significant. If this inhomogeneity becomes 

’frozen in’ during preparation, it may be a source of intergranular weak links. The 

possibility of weak links arising from the space charge of oxygen vacancies has also 

been postulated by Clarke et al. (186) in YBa2Cu307_x.

These results compare favourably with the work of Rogers et al. (253) who 

found evidence for near-surface enrichment by oxygen in a polycrystalline sample of
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La2Cu0413- However, it should be noted that the concentrations in theory and 

experiment are markedly different.

In the extrinsic regime the properties of the space charge are controlled by 

aliovalent impurities. Mg2+, Ca2+, Si2+ and Ba2+ segregation to the two surfaces of 

La2Cu04 and Ce4+ and Th4+ segregation to the surfaces of Nd2Cu04 is considered. 

For singly charged positive impurities (with an interaction energy of Fjnj1) and singly 

charged electrons (with an interaction energy of FlNTe) the bulk potential is given by 

(254):

e<Koo) = 1/20EW  - Fun-') + kTln(l + 8) (6.30)

with

5 =  2Asinh((F1NT‘ -F INT1)/4kT)

1  + AcoshfCF^ - F n g r ^ k T )

(6.31)

Equation 6.19 and 6.20 are valid when 8 < 1. An analogous equation gives the bulk 

potential that is due to negatively charged impurities and holes.

Copper site solution is predicted for Mg2+ at both the {001} surface and in the 

bulk of La2Cu04. The interaction energy is 0.1 eV and, therefore, the concentration of 

Mg2+ at this surface will be similar to that in the bulk. The other three divalent cation 

impurities dissolve at bulk and surface lanthanum sites and will be charge 

compensated by holes, the interaction energy of the latter being -0.3 eV. The 

interaction energy of Ca2+ is positive and, hence, this cation will not segregate to this 

surface. The interaction energy of Sr2+ is small and negative and, therefore, the 

concentration of this cation at the surface and the bulk will be similar. The 

sub-surface concentration of these impurities will increase because the surface will be
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positively charged due to an excess of holes. As A > 1 the concentration of defects in 

the space charge region as a whole will be similar to that of the bulk. In contrast to 

Ca2+ and Sr2-1", the {001} surface will act as a defect source for Ba2+ because A = 

0.05. As 5 = 0.5, the bulk potential and surface impurity concentration can be 

calculated from equation 6.30 (254). For a bulk impurity concentration of lOOppm the 

value of e<}>(oo) is 0.3 eV and the surface concentrations of B a ^ ’ and holes are 283 x 

103 and 94 x 103 ppm respectively.

At the {100} surface of La2Cu04, Mg2+ dissolves at surface copper sites. 

Using equation 4.21 and assuming the entropy of segregation is zero, the surface 

concentration at 1000 K for an impurity concentration of 100 ppm is then 0.03. The 

other three cations segregate to both surface copper and lanthanum sites. Solution at 

copper sites will only be significant at the surface, however, because the substitution 

energies on other planes are significantly higher (figure 6.11). In each case the cation 

interaction energies are exothermic (Ca2+; -0.6 eV; Sr2+ -0.6 eV; Ba2+ -1.3 eV) and 

the cations will segregate to the surface. The surface concentration of aliovalent 

defects will be influenced by the interaction energy of positive charge (holes in the 

bulk and vacancies at the surface) which was calculated to be 0.8 eV. Thus, although 

the {100} surface will be negatively charged and enriched by calcium, strontium and 

barium, it will not act as a defect source because in each case A > 1. The importance 

of segregation to copper sites can be gauged by calculating the difference in exsolving 

the M ^ ’ (M = Ca, Sr, Ba) from the bulk and then dissolving it at the surface. The 

assumption used here is that the corresponding change in the bulk concentration is 

small enough not to influence the space charge. The energies of this reaction for Ca2+, 

Sr2+ and Ba2+ are -0.8, -0.6 and -1.6 eV respectively. Using equation 4.21, surface 

concentrations of 0.5, 0.1 and full monolayer coverage are predicted. However, this 

assumes that the substitution energy is independent of coverage. From figure 6.12, 

this is clearly not the case. Using equation 4.35 and assuming that the segregation
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entropy is negligible, the calculated surface coverages at 1000 K for a bulk 

concentration of 100 ppm of calcium, strontium and barium at copper sites are 0.2

0.05 and 0.42 of a monolayer respectively. Note that as the concentration of surface 

impurities increases this will influence the formation energies of other defects.

These results are supported by the photoemission studies of Egdell et al. (255) 

and Roshko et al. (256) who observed strontium segregation at ffee surfaces and grain 

boundaries of La2.xSrxCu04 respectively. Evidence for the segregation of Ca2+ to 

grain boundary copper sites of La2.xCaxCu04 has also been found (257) and is in 

accord with these results. However, it should be noted that although grain boundaries 

are less dense than the bulk, direct comparison with surface phenomena should be 

treated with care.

At the {001) surface of Nd2Cu04, Ce4* and Th4* are predicted to segregate to 

neodymium sites. The interaction energy of electrons (-1.4 eV) is more negative than 

that of either Ce4* (-0.8 eV) and Th4* (-0.6 eV) and therefore the surface will be 

negatively charged with a excess of Ce4* and Th4* in the space charge region. As A < 

1 for both Ce4* and Th4* the surface will act as a defect source but the exact surface 

concentrations cannot be estimated because the requirement that the number of 

impurities on the surface (ns) is much less than the total number of surface sites (Ns) 

is not fulfilled. At the {100) surface the interaction energies of Ce4* and Th4* are 

small and positive whereas that for electrons is negative (-1.1 eV). Thus the surface 

will be negatively charged will the sub-surface concentration of tetravalent cations 

will increase. In common with the {100) surface of Nd2Cu04 this surface will act as a 

defect source but again the concentration of defects cannot be calculated because the 

requirement ns «  Ns does not hold.
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6.8 Summary

In this chapter, atomistic simulation has been used to investigate the surface 

defect properties of ternary oxides. Infinitely dilute defect concentrations were only 

considered for which the materials are semi-conductors. At higher hole or electron 

concentrations La2Cu04 and Nd2Cu04 become metallic and these results must be 

treated with caution.

The results show that defect and impurity behaviour at the {001} surface of 

La2Cu04 is similar to that in the bulk and is attributed to the small relaxation of this 

surface. In contrast, the surface stoichiometry and defect properties at the {001} 

surface of Nd2Cu04 and the {100} surfaces of both materials show markedly different 

behaviour. Although this is due to a combination of the surface structure, relaxation 

and Madelung site potentials the relationship between these properties and the defect 

behaviour is by no means clear and surface defect formation energies must be 

calculated explicitly.

The treatment of aliovalent defects and impurities at the surfaces of these two 

oxides was different from that described in chapter 4 because the binding energies of 

defects and impurities are negligible. Thus, the charge neutrality condition on each 

plane no longer applies and interactions with the space charge must be considered. 

Although this discussion was fairly simple, three cases were identified. The first was 

when the surface did not act a defect source and therefore the concentration of defects 

on the surface plane was less than that in the space charge region in the absence of the 

surface. The second case was when the surface acted as a defect source and the bulk 

potential and surface defect concentrations could be determined quantitatively. In the 

last case the enhanced surface defect concentration is so large that the approximations 

made in the analytical derivation of the expressions break down. A quantitative 

description of the space charge must then be obtained by numerical methods (258).
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However, at such high defect concentrations it is possible that the material will 

become metallic and therefore the space charge will be screened.
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Conclusions

This thesis has been concerned with the application of computer simulation 

techniques to study surface phenomena. There have been two major achievements. 

The first was extending the simulations to include the vibrational entropy contribution 

to surface and segregation free energies of corundum structured oxides. The second 

was extending these techniques to study defects at the surfaces of ternary oxides.

In Chapter 4, calculations on the segregation of magnesium and calcium to the 

{1010} prism and calcium to the basal surface of (X-AI2O3 were discussed. These 

impurities were considered because small additions of MgO, but not CaO, promote 

the densification of (X-AI2O3. The calculated segregation potential energies were used 

to calculate the change in impurity coverage at the prism surface. The results for the 

prism surface compared favourably with experiment, even though the vibrational 

entropy of segregation had not been calculated explicitly. Calcium was predicted to 

segregate at the basal surface of a-Al20 3. The mismatch between theory and 

experiment for this surface was attributed to kinetic factors.

The vibrational contribution to the basal surface free energy and the 

segregation of calcium at the basal surface were calculated using lattice dynamics. All 

previous studies on corundum structured oxides have neglected this effect. The 

calculations showed that the major component to the surface and segregation free 

energies is the potential energy. This is in accord with calculations on cubic oxides.

In Chapter 5 and 6, computer simulation techniques were extended to include 

ternary oxide surfaces. Two oxides were considered: La2Cu04 and Nd2Cu04. These 

materials are important because they are the parent compounds of p-type and n-type 

superconductors respectively.

In Chapter 5, the structures and energies of the {001} and {100} surfaces were 

discussed and compared to those of the higher index surfaces. It was found that
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surface relaxation, which disrupts the Cu02 planes, alters the relative stabilities of 

ternary oxide surfaces. This was demonstrated by calculating the equilibrium 

morphologies which showed significant changes on relaxation. The equilibrium 

morphologies were also compared with experiment and it was concluded that kinetic 

factors play an important role in determining the morphologies of crystals grown in a 

laboratory.

The non-stoichiometry and composition of the {001} and {100} surfaces of 

La2Cu04 and Nd2Cu04 were discussed in Chapter 6. Defect formation energies at 

each of the surfaces were significantly different from previous calculations on bulk 

behaviour. The difference in calculated bulk and surface energies could not be 

predicted by a simple comparison of the pure bulk and surface Madelung site 

energies. This is because relaxation about the defect and the image charge also 

influence surface defect formation energies. The relative stabilities of positively 

(oxygen vacancies and holes) and negatively (cation vacancies, oxygen interstitials 

and electrons) charged defects at the four surfaces were also calculated. At the {100} 

La2Cu04, oxygen vacancies are more stable than holes, in contrast to the {001} 

surface and in the bulk. This behaviour will also disrupt the Cu02 planes at the {100} 

surface. In Nd2Cu04, cation vacancies are less stable than electrons at the {001} and 

{100} surfaces and in the bulk.

Impurities also influence the surface properties of oxides. Surface and bulk 

substitution energies of divalent and tetravalent cations at copper sites were 

calculated. These were used to determine impurity interaction energies (the difference 

in substituting the energy at the surface and in the bulk). For isovalent impurities in 

binary oxides these correspond to segregation energies. For ternary oxides, the 

solution of impurities at two cation sites must be considered. Calculations on the 

surface and bulk solution energies showed that calcium, strontium and barium 

segregation to {100} surface copper sites of La2CuQ4 can be expected.



200

Any treatment of aliovalent surface defect concentrations in ceramic oxides 

must take into account of the formation of a space charge. This was done by defining 

a parameter, A, which represented the ratio of defects or impurities at the surface to 

the concentration of defects in the space charge region in the absence of the boundary. 

When A is greater than 1 the boundary does not act as a defect source. When A is less 

than 1 defects accumulate at the boundary. However, when the concentration of 

particular impurities is high, La2Cu04 and Nd2Cu04 are metallic and the space 

charge will be screened. The results must then be treated with caution.

The implications for high temperature superconducting behaviour in doped 

La2Cu04 and Nd2Cu04 are concerned with their materials interface properties. 

Surface relaxation will disrupt the Cu02 planes and this effect can extend over 

distances greater than 10 A (similar to the superconducting coherence length in the ab 

plane). The Cu02 planes will also be disrupted by oxygen vacancies and the 

segregation of impurities to copper sites. These will influence intergranular weak 

links and surface conductivity because the superconducting current is carried by the 

C u02 planes.

To conclude, the work described in this thesis has successfully demonstrated 

that computer simulation techniques can be applied to study the effects of temperature 

on corundum structured oxides. The inclusion of the anharmonic contribution to the 

surface and segregation free energy will be an important addition to this work.

Ternary oxides have also been studied successfully by computer simulation 

techniques. The work described in Chapter 5 and 6, combined with the work on bulk 

defect properties by Allan and Mackrodt, shows that the material properties of 

La2Cu04 and Nd2Cu04 are well understood. Further work on the grain boundaries of 

ternary oxides can only enhance this understanding.
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Appendix 1

Non-Empirical Potentials used in Chapter 4

Energies in eV and distances in A

Al3+ shell Al3+ shell

5.5670480728
1.9018163681
0.6267266273
0.1989530325
0.0602402575
0.0168372579
0.0038457250
0.0002095541
-0.0006822753
-0.0008281469
-0.0008001158
-0.0007484076
-0.0007013259
-0.0006624085
-0.0006294786
-0.0006017198
-0.0005753213
-0.0005309612
-0.0004928606
-0.0004602026
-0.0004313551
0.0000000000

Al3+ shell O2' shell

1.0583543777
1.1906480789
1.3229427338
1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

375.3889160156
45.5217742920
27.4393615723
16.5209045410
9.9241685867
5.9452943802
3.5532150269
2.1202993393
1.2644119263
0.7540940046
0.4499310851
0.2685672045
0.1603066921
0.0956229568
0.0569506772
0.0338350087
0.0200335532
0.0118117779
0.0040404648
0.0013428195
0.0004250517
0.0001258957

0.5291770101
1.0583543777
1.1906480789
1.3229427338

1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573
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0.0000000000 4.4980049133

O2" shell O2" shell

23.8096771240
17.5060272217
13.0766620636
9.7808971405
7.2644815445
5.3352394104
3.8685264587
2.7687892914
1.9568386078
1.3664588928
0.9432928562
0.6439008117
0.4346213341
0.2899468541
0.1909908056
0.1240097284
0.0791572928
0.0300666504
0.0097075216
0.0019627323
-0.0005347712
0.0000000000

1.0583543777
1.1906480789
1.3229427338

1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Al3+ shell Ca2+ shell

485.5278320313
35.1964569092
17.7159423828
8.6284055710
4.0824546814
1.8831586838
0.8486286402
0.3735997677
0.1601703167
0.0662945509
0.0259211659
0.0090129972
0.0021734592
-0.0004522044
-0.0013727262
-0.0016341626
-0.0016598753
-0.0016106572
-0.0014802057
-0.0013657236
-0.0012712148
-0.0011905967
0.0000000000

0.5291770101
1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

O2" shell Ca2+ shell



490.7390136719
59.2502441406
38.7875976563
25.5459899902
16.7957000732
10.9786043167
7.1187200546
4.5738086700
2.9108095169
1.8351745605
1.1465997696
0.7102253437
0.4362245798
0.2656456232
0.1602936387
0.0957335234
0.0564855039
0.0328349285
0.0104196072
0.0028666721
0.0005524794
-0.0000362774
0.0000000000

0.5291770101
1.0583543777
1.1906480789
1.3229427338
1.4552364349
1.5875310898

1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Ca2+ shell Ca2+ shell

67.6298065186
40.4976348877
24.2686157227
14.2970285416
8.2177648544
4.5996284485
2.5078716278
1.3329811096
0.6908536553
0.3487377167
0.1709182858
0.0807779431
0.0363026559
0.0150337331
0.0052638873
0.0010227326
-0.0006526113
-0.0012875327
-0.0011081873
-0.0009351010
-0.0008281469
0.0000000000

1.0583543777
1.1906480789
1.3229427338
1.4552364349

1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133
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Appendix 2

Non-Empirical Potentials used in Chapter 5

Energies in eV and distance in A

Cu2+ shell Cu2+ shell

75.2947387695
37.6233673096
18.8722229004
9.5023002625
4.7951889038
2.4194688797
1.2172746658
0.6087278128
0.3014336824
0.1470565200
0.0701581836
0.0323360935
0.0140844770
0.0016707175
0.0000000000

1.0583543777
1.1906480789
1.3229427338

1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.9104738235
3.1750621796

Cu2+ shell La3+ shell

2093.5678710938
150.6905364990
87.6615142822
51.7414550781
30.3836975098
17.5530548096
9.9435625076
5.5326652527
3.0345735550
1.6464605331
0.8856495023
0.4725876451
0.2498361468
0.1304435730
0.0668668151
0.0333424844
0.0158979483
0.0070373528
0.0006601114
-0.0004526288
-0.0003942284
-0.0002038281
0.0000000000

0.5291770101
1.0583543777

1.1906480789
1.3229427338
1.4552364349
1.5875310898

1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Cu2+ shell O2' shell

579.7153320313 0.2997787595
72.8338775635 0.8289555907
45.8854827881 0.9612498283



28.9237060547
18.1938171387
11.4012012482
7.1117057800
4.4149131775
2.7280168533
1.6781902313
1.0277967453
0.6265239716
0.3798806667
0.2288821340
0.1368171573
0.0809706450
0.0473022312
0.0271694325
0.0082968399
0.0020770777
0.0002537973
-0.0001569533
0.0000000000

1.0935440063
1.2258386612
1.3581323624

1.4904270172
1.6227207184
1.7550153732
1.8873100281
2.0196037292
2.1518983841
2.2841920853
2.4164867401
2.5487804413
2.6810750961
2.8133697510
2.9456634521
3.2102518082
3.4748411179
3.7394294739
4.0040178299

4.2686061859

La3+ shell La3+ shell

267.5600585938
156.3569030762
93.3763427734
56.6985015869
34.9430999756
21.7873382568
13.6443386078
8.4980897903
5.2166566849
3.1378688812
1.8453435898
1.0615272522
0.5984259844
0.3311707377
0.1800058484
0.0958366990
0.0496814586
0.0115325451
0.0014402079
-0.0005979096
-0.0006428140
0.0000000000

1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446
1.8521194458

1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

La3+ shell O2' shell

931.0944824219
99.0900268555
62.9529876709
41.2384338379
27.5127563477
18.4745025635
12.3812484741

0.5926781893
1.1218547821
1.2541494370
1.3864440918
1.5187377930
1.6510324478
1.7833261490



8.2416896820
5.4359560013
3.5487060547
2.2920160294
1.4644422531
0.9255762696
0.5785463452
0.3573981524
0.2178830504
0.1307314038
0.0768595934
0.0241122134
0.0056338347
-0.0000559564
-0.0012687140
0.0000000000

O2’ shell O2' shell

1.9156208038
2.0479145050
2.1802091599
2.3125038147
2.4447975159
2.5770921707
2.7093858719
2.8416805267
2.9739751816
3.1062688828
3.2385635376
3.5031518936
3.7677402496
4.0323286057
4.2969169617

4.5615053177

23.8096771240
17.5060272217
13.0766620636
9.7808971405
7.2644815445
5.3352394104
3.8685264587
2.7687892914
1.9568386078
1.3664588928
0.9432928562
0.6439008117
0.4346213341
0.2899468541
0.1909908056
0.1240097284
0.0791572928
0.0300666504
0.0097075216
0.0019627323
-0.0005347712
0.0000000000

0.7702169418
0.9025111794
1.0348052979

1.1670999527
1.2993936539
1.4316883087
1.5639820099
1.6962766647
1.8285713196
1.9608650208
2.0931596756
2.2254533768
2.3577480316
2.4900426865
2.6223363876
2.7546310425
2.8869247437
3.1515130997
3.4161024094
3.6806907654
3.9452791214

4.2098674774

Nd3+ shell Nd3+ shell

189.6097259521
99.4454498291
52.0159912109
26.9907684326
13.7416744232
6.7681980133
3.1861257553
1.4242277145
0.6047251225
0.2458956242
0.0975218415

1.0583543777
1.1906480789
1.3229427338
1.4552364349
1.5875310898

1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578



0.0389394984
0.0164037310
0.0076070800
0.0040223487
0.0023671442
0.0015689339
0.0008278743
0.0004354371
0.0001273653
-0.0000468095
0.0000000000

2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Nd3+ shell O2' shell

899.5068359375
104.4732971191
66.2998657227
42.3114013672
26.9106140137
16.9915008545
10.6402997971
6.6090049744
4.0735521317
2.4930191040
1.5160570145
0.9168472886
0.5517900586
0.3305780292
0.1971038580
0.1168470383
0.0687398911
0.0400233120
0.0129268616
0.0037546861
0.0009088195
0.0001380063
0.0000000000

0.6191371083
1.1483144760

1.2806081772
1.4129028320
1.5451965332
1.6774911880
1.8097858429

1.9420795441
2.0743741989
2.2066679001
2.3389625549
2.4712562561
2.6035509109
2.7358455658
2.8681392670
3.0004339218
3.1327276230
3.2650222778
3.5296106339
3.7941989899
4.0587873459
4.3233766556
4.5879650116

Nd3+ shell Cu2+ shell

2033.3408203125
119.6591186523
62.6959838867
32.3711547852
16.3232727051
8.0421819687
3.8904428482
1.8576784134
0.8786126971
0.4121308923
0.1916331649
0.0881729126
0.0400215462
0.0178333633
0.0077146105

0.5291770101
1.0583543777

1.1906480789
1.3229427338
1.4552364349

1.5875310898
1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687



0.0031821518
0.0011792313
0.0003459139
-0.0000998131
-0.0001118665
-0.0000677050
-0.0000281864
0.0000000000

2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133
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Appendix 3

Non-Empirical Potentials used for Impurity Interactions in Chapter 6

Energies in eV and distances in A

Ba2+ shell Ba2+ shell

276.6674804688
164.5711517334
100.3873138428
62.2913208008
39.2861022949
25.1851501465
16.3437194824
10.6539793015
6.9210090637
4.4530229568
2.8257484436
1.7630720139
1.0787925720
0.6456947923
0.3769879937
0.2139165401
0.1174005866
0.0307195336
0.0053825453
-0.0005266068
-0.0011666992
0.0000000000

Ba2+ shell O2" shell

1.0583543777
1.1906480789
1.3229427338

1.4552364349
1.5875310898
1.7198257446
1.8521194458
1.9844141006

2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

887.2707519531
92.5080718994
58.6659240723
38.5836486816
26.0233917236
17.7833709717
12.1989889145
8.3480396271
5.6750564575
3.8214731216
2.5442285538
1.6728115082
1.0854082108
0.6946231127
0.4381209612
0.2719913125
0.1658308506
0.0989325047
0.0320368186
0.0080413483
0.0004615195
-0.0012906000

0.6164911389
1.1456680298
1.2779626846
1.4102563858
1.5425510406
1.6748447418
1.8071393967

1.9394340515
2.0717277527
2.2040224075
2.3363161087
2.4686107635
2.6009054184
2.7331991196
2.8654937744
2.9977874756
3.1300821304
3.2623758316
3.5269651413
3.7915534973
4.0561418533
4.3207302094
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0.0000000000 4.5853185654

Ba2+ shell Cu2+ shell

2096.0612792969
157.8134002686
93.6735229492
56.8845367432
34.6336669922
20.8932037354
12.4314613342
7.2868394852
4.2061042786
2.3894901276
1.3350172043
0.7329009175
0.3948392272
0.2082968950
0.1071261168
0.0532945618
0.0252512284
0.0110688880
0.0010413884
-0.0006130466
-0.0005131573
-0.0002825197
0.0000000000

0.5291770101
1.0583543777

1.1906480789
1.3229427338
1.4552364349
1.5875310898
1.7198257446

1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Ba2+ shell La3+ shell

3588.3527832031
274.0480957031
161.8529663086
97.8372497559
60.1419525146
37.5552673340
23.7862548828
15.1948204041
9.7051792145
6.1456327438
3.8346500397
2.3493032455
1.4106359482
0.8292365074
0.4766635895
0.2674656510
0.1460217237
0.0771741271
0.0186056644
0.0027139345
-0.0006533270
-0.0008531222
0.0000000000

0.5291770101
1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446
1.8521194458

1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Ba2+ shell Nd3+ Shell
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3359.0737120601
243.5714843993
142.9796889336
85.2881959843
51.4124667816
31.1607832156
18.8334924063
11.2455697919
6.5875524060
3.7725473269
2.1100536358
1.1527467963
0.6151719327
0.3205894790
0.1630045190
0.0808054241
0.0389449503
0.0182170555
0.0034935663
0.0003995135
-0.0001698205
-0.0002237058
0.0000000000

0.5291770000
1.0583540000
1.1906482500

1.3229425000
1.4552367500
1.5875310000
1.7198252500
1.8521195000

1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

Ca2+ shell Cu2+ shell

973.5700574989
77.1427244621
42.9273668374
23.4458610156
12.5788855514
6.6453071505
3.4633886161
1.7822652929
0.9052418972
0.4531291854
0.2228463680
0.1071262362
0.0499019085
0.0221795332
0.0091087999
0.0031882160
0.0006651302
-0.0002917429
-0.0005815807
-0.0004204690
-0.0002971858
-0.0002302374
0.0000000000

0.5291770000
1.0583540000
1.1906482500
1.3229425000
1.4552367500

1.5875310000
1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

Ca2+ shell Ca2+ shell

67.6298234049 1.0583540000
40.4976596402 1.1906482500



24.2686226888
14.2970313701
8.2177671445
4.5996293526
2.5078730560
1.3329810172
0.6908538949
0.3487377663
0.1709183162
0.0807779371
0.0363026635
0.0150337382
0.0052638903
0.0010227329
-0.0006526114
-0.0012875331
-0.0011081874
-0.0009351012
-0.0008281469
0.0000000000

Ca2+ shell O2'shell

1.3229425000
1.4552367500

1.5875310000
1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

490.7392661540
59.2502625286
38.7876205718
25.5459953942
16.7957047286
10.9786068416
7.1187230784
4.5738101095
2.9108113114
1.8351747111
1.1466003294
0.7102256752
0.4362247005
0.2656457531
0.1602936509
0.0957335687
0.0564854454
0.0328349512
0.0104197377
0.0028668090
0.0005524608
-0.0000361957
0.0000000000

0.5774908601
1.1066678601
1.2389621101
1.3712563601
1.5035506101
1.6358448601

1.7681391101
1.9004333601
2.0327276101
2.1650218601
2.2973161101
2.4296103601
2.5619046101
2.6941988601
2.8264931101
2.9587873601
3.0910816101
3.2233758601
3.4879643601
3.7525528601
4.0171413601
4.2817298601

4.5463183601

Ca2+ shell La3+ shell

1675.2612131102
134.3829943520
78.2342820037
46.8495461377
28.6475809538
17.6208964130

0.5291770000
1.0583540000

1.1906482500
1.3229425000
1.4552367500
1.5875310000



228

10.7375676392
6.4154045242
3.7407778358
2.1276477442
1.1823203236
0.6433523334
0.3433935923
0.1798763460
0.0923015079
0.0461677632
0.0222693421
0.0101503110
0.0013637346
-0.0003129704
-0.0003690329
-0.0001954024
0.0000000000

1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

Ca2+ shell Nd3+ shell

1519.6537213488
113.6842186639
63.6931960293
35.9355377511
20.0599429196
10.9195996711
5.7523492062
2.9265406603
1.4391952849
0.6851943012
0.3159874531
0.1408745168
0.0602944315
0.0243371240
0.0088124305
0.0024025242
-0.0000987898
-0.0009628603
-0.0012363692
-0.0012189517
-0.0012524260
-0.0012584132
0.0000000000

0.5291770000
1.0583540000

1.1906482500
1.3229425000
1.4552367500
1.5875310000

1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

Ce4* shell Ce4* shell

254.6559448242
145.6989135742
84.8994293213
50.2344360352
30.0787353516
18.0928649902
10.8197736740
6.3650932312
3.6544542313

1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446
1.8521194458

1.9844141006
2.1167078018
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2.0389757156
1.1043643951
0.5813391805
0.2980797291
0.1491257548
0.0728350282
0.0345881209
0.0158686787
0.0027993154
0.0003156918
0.0000552461
0.0000677649
0.0000000000

2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573
4.4980049133

Ce4* shell Cu2+ shell

2092.3388671875
143.9192199707
81.9971923828
47.0006103516
26.6300811768
14.7860383987
8.0310659409
4.2761468887
2.2395114899
1.1570415497
0.5905717015
0.2976673841
0.1477407813
0.0717937946
0.0337694995
0.0150688365
0.0060819648
0.0019608270
-0.0004476837
-0.0005619859
-0.0004014184
-0.0003355586
0.0000000000

0.5291770101
1.0583543777

1.1906480789
1.3229427338
1.4552364349
1.5875310898

1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Ce4+ shell O2' shell

973.8674316406
105.0317993164
66.6914367676
43.3989562988
28.5843811035
18.8650817871
12.3959283829
8.0815858841
5.2191352844
3.3365650177
2.1112365723
1.3223466873
0.8199484944

0.5635732412
1.0927505493

1.2250442505
1.3573389053
1.4896326065
1.6219272614
1.7542219162

1.8865156174
2.0188102722
2.1511039734
2.2833986282
2.4156932831
2.5479869843
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0.5033265352
0.3057281375
0.1835451126
0.1086613536
0.0631974339
0.0196621567
0.0048123971
0.0003080717
-0.0006762883
0.0000000000

2.6802816391
2.8125753403
2.9448699951
3.0771636963
3.2094583511
3.4740467072
3.7386350632
4.0032234192
4.2678127289

4.5324010849

Ce4* shell La3+ shell

3614.3749162480
262.6858097884
152.1038431750
89.8399735207
53.9212757552
32.8110364975
20.1371668735
12.3540236539
7.4985404401
4.4654159348
2.5963721094
1.4719687306
0.8145942339
0.4410626789
0.2341100373
0.1219046994
0.0620846222
0.0307372330
0.0064420198
0.0006999651
-0.0002694267
-0.0002433005
0.0000000000

0.5291770000
1.0583540000
1.1906482500

1.3229425000
1.4552367500
1.5875310000
1.7198252500
1.8521195000

1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000

Ce4+ shell Nd3+ shell

3357.3046875000
223.2038879395
125.4153747559
71.1031646729
40.4668426514
22.9531555176
12.8438711166
7.0170497894
3.7152662277
1.9002895355
0.9398964643
0.4515287876
0.2121350169
0.0982667208
0.0451912843
0.0207719766

0.5291770101
1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446

1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235



231

0.0095347092
0.0044156052
0.0010510359
0.0004373419
0.0003124261
0.0002147249
0.0000000000

3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573
4.4980049133

Mg2+ shell Cu2+ shell

31.6174595805
14.7872391134
6.8930885522
3.2083566424
1.4906723871
0.6901550184
0.3174796416
0.1445267455
0.0647462315
0.0283001460
0.0118926037
0.0046621706
0.0015779152
0.0000000000

1.0583540000
1.1906482500

1.3229425000
1.4552367500
1.5875310000
1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500

Mg2+ shell La3+ shell

1022.7375779451
77.7190205702
44.9190542446
25.8804598044
14.6070881698
8.0127957418
4.2714521099
2.2231521641
1.1376564513
0.5766079899
0.2912418346
0.1471967914
0.0745460157
0.0378005671
0.0191486188
0.0096955514
0.0049373125
0.0025987431
0.0009927966
0.0007108511
0.0006493456
0.0005696062
0.0000000000

0.5291770000
1.0583540000
1.1906482500
1.3229425000
1.4552367500

1.5875310000
1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

Mg2+ shell Mg2+ shell

11.4674350657 1.0583540000
4.7367852365 1.1906482500
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1.9058026093
0.7484842677
0.2870929355
0.1074087261
0.0390772143
0.0137804957
0.0047274862
0.0016386043
0.0006607758
0.0003891719
0.0003317486
0.0003254892
0.0003246728
0.0003205906
0.0003146033
0.0002960972
0.0002767747
0.0002588129
0.0002427562
0.0000000000

1.3229425000
1.4552367500
1.5875310000
1.7198252500
1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

Mg2+ shell O2- shell

43.2804102601
26.6829401780
16.4046168940
10.0436986145
6.1201430608
3.7122335729
2.2428165037
1.3509144943
0.8118814607
0.4871011717
0.2918073586
0.1745114888
0.1041282518
0.0619384787
0.0366896582
0.0216172750
0.0126535301
0.0042272778
0.0013514879
0.0004003300
0.0001015113
0.0000000000

1.0748643224
1.2071585724
1.3394528224
1.4717470724

1.6040413224
1.7363355724
1.8686298224
2.0009240724
2.1332183224
2.2655125724
2.3978068224
2.5301010724
2.6623953224
2.7946895724
2.9269838224
3.0592780724
3.1915723224
3.4561608224
3.7207493224
3.9853378224
4.2499263224
4.5145148224

Mg2+shell Nd3+ shell

966.8961421307
53.2912739234
26.3599098019
12.5521271249
5.6995227932
2.4655640819
1.0202963545

0.5291770000
1.0583540000
1.1906482500
1.3229425000

1.4552367500
1.5875310000
1.7198252500



0.4066982548
0.1576731360
0.0603279057
0.0233388845
0.0095015098
0.0043056565
0.0023029180
0.0014862013
0.0011468325
0.0009930687
0.0009277532
0.0008371278
0.0006833641
0.0004827909
0.0003382802
0.0000000000

1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

Sr2* shell Cu2+ shell

1558.9873046875
111.4207000732 
64.3996429443 
37.1241912842 
21.1350555420
11.8605403900 
6.5650053024 1
3.5860099792 1
1.9320363998 1
1.0252008438 2
0.5344932079 2
0.2728770971 2
0.1357787848 2
0.0654002428 2
0.0301509909 2
0.0130522028 2
0.0050905980 3
0.0016196026 3
-0.0001826196 
-0.0001667751 
-0.0000126631 
0.0000500916 4
0.0000000000 4

Sr2+ shell La3+ shell

0.5291770101
1.0583543777

1.1906480789
1.3229427338
1.4552364349
1.5875310898

1.7198257446
1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476

4.2334165573
4.5

2608.9443359375
201.5770111084
118.0174560547
70.1389160156
42.3998870850
26.0368347168
16.1154785156
9.9450016022
6.0621871948
3.6299095154

0.5291770101
1.0583543777
1.1906480789

1.3229427338
1.4552364349
1.5875310898
1.7198257446

1.8521194458
1.9844141006
2.1167078018



2.1301746368 :
1.2246789932 :
0.6898554564 :
0.3805885911 :
0.2052853703 :
0.1079031229 :
0.0549057648 ■
0.0267804153 ■
0.0051015019 ■
0.0003179698 ■
-0.0002872196 
-0.0001545148 
0.0000000000 i

Sr2"*" shell O2' shell

694.8359375000 
78.8980255127 
50.9216156006 
33.5304412842 
22.2564849854 
14.7832355499 
9.7836074829 ]
6.4336090088 ]
4.1961450577 :
2.7113237381 :
1.7343358994 :
I.0977716446 :
0.6872818470 :
0.4253656864 :
0.2600100636 ;
0.1567389965 :
0.0929651856 ■
0.0540639646 :
0.0168066658 ■
0.0042458847 ;
0.0005132034 i
-0.0003206204 
0.0000000000 *

Sr2̂  shell Sr2+ shell

151.7082214355
87.8962707520
52.1175994873
31.5668334961
19.3137969971
II.7894468307 
7.1179580688 1
4.2316284180 1
2.4719524384 :
1.4169225693 2
0.7955942750 2
0.4364740849 2
0.2330795527 2

2.2490024567
2.3812961578
2.5135908127
2.6458854675
2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

0.5987638831
1.1279411316
1.2602348328
1.3925294876
1.5248241425
1.6571178436

1.7894124985
1.9217061996
2.0540008545
2.1862945557
2.3185892105
2.4508838654
2.5831775665
2.7154722214
2.8477659225
2.9800605774
3.1123542786
3.2446489334
3.5092372894
3.7738256454
4.0384149551
4.3030033112

4.5675916672

1.0583543777
1.1906480789
1.3229427338
1.4552364349
1.5875310898
1.7198257446

1.8521194458
1.9844141006
2.1167078018
2.2490024567
2.3812961578
2.5135908127
2.6458854675



0.1204628348
0.0597514771
0.0280391499
0.0121448785
0.0012714760
-0.0003638621
-0.0002590851
-0.0000655877
0.0000000000

2.7781791687
2.9104738235
3.0427675247
3.1750621796
3.4396505356
3.7042388916
3.9688272476
4.2334165573

4.4980049133

Sr2* shell Nd3+ shell

2440.3663159425
172.3830284041
97.1834074544
55.5676408559
32.0506272404
18.4256386102
10.4273382975
5.7622853366
3.0998604122
1.6230942533
0.8276655114
0.4109668992
0.1983927646
0.0928482536
0.0419481055
0.0182668586
0.0076743068
0.0032116208
0.0007846032
0.0004261841
0.0002370411
0.0000971569
0.0000000000

Th4+ shell O2* shell

0.5291770000
1.0583540000

1.1906482500
1.3229425000
1.4552367500
1.5875310000
1.7198252500

1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

1219.7417839548
122.7710521354
76.5718802988
49.3450636658
32.5998280025
21.8580096807
14.7443757735
9.9409362745
6.6676401753
4.4342987830
2.9174637018
1.8961740064
1.2162626459
0.7693710970
0.4795460658
0.2941432065
0.1771349973

0.5500794915
1.0792564915

1.2115507415
1.3438449915
1.4761392415
1.6084334915
1.7407277415

1.8730219915
2.0053162415
2.1376104915
2.2699047415
2.4021989915
2.5344932415
2.6667874915
2.7990817415
2.9313759915
3.0636702415



0.1043179391
0.0326798268
0.0075121065
-0.0002354082
-0.0018530570
0.0000000000

3.1959644915
3.4605529915
3.7251414915
3.9897299915
4.2543184915

4.5189069915

Th4* shell Th4* shell

6408.2375307767
448.1170644377
258.9436782794
153.3548742924
92.4495015892
56.5580754918
35.1068817809
22.0737197055
13.9862889964
8.8667536395
5.5847173624
3.4741167794
2.1243077973
1.2716747279
0.7423384513
0.4209686745
0.2307359168
0.1216061283
0.0290837967
0.0054381495
0.0010817183
0.0007171921
0.0000000000

0.5291770000
1.0583540000
1.1906482500
1.3229425000

1.4552367500
1.5875310000
1.7198252500
1.8521195000
1.9844137500

2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

Th4* shell Cu2+ shell

2798.2904604086
190.2748932445
110.3610195676
65.7796625815
39.4943453327
23.5540894520
13.8571789342
8.0185293598
4.5574657057
2.5415862294
1.3891328089
0.7430189878
0.3880269840
0.1971057758
0.0966874481
0.0452541617
0.0197187692
0.0076400161
0.0002914707
-0.0001913202

0.5291770000
1.0583540000
1.1906482500

1.3229425000
1.4552367500
1.5875310000
1.7198252500

1.8521195000
1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000



0.0002158135 3.9688275000
0.0003352866 4.2334160000
0.0000000000 4.4980045000

Th4* shell La3+ shell

4814.6759959263
345.3243889586
200.4306039717
119.1371044386
72.0412617399
44.2545606233
27.5879899386
17.3724174956
10.9619734164
6.8709443983
4.2475811757
2.5773484066
1.5305050848
0.8877876731
0.5021085115
0.2763373669
0.1474588701
0.0759753380
0.0176071714
0.0032363863
0.0006439026
0.0004623798
0.0000000000

0.5291770000
1.0583540000
1.1906482500
1.3229425000

1.4552367500
1.5875310000
1.7198252500
1.8521195000
1.9844137500

2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000
4.4980045000

Th4* shell Nd3+ shell

4489.6702377637
296.0552957920
170.0969793970
99.6966686254
59.1547178144
35.3314343031
21.0739669061
12.4332775475
7.1961528634
4.0641185153
2.2332439551
1.1921222224
0.6173921394
0.3097590533
0.1502392394
0.0703676021
0.0317386812
0.0138631499
0.0025124095
0.0004890394
-0.0000157574
-0.0002140554
0.0000000000

0.5291770000
1.0583540000
1.1906482500

1.3229425000
1.4552367500
1.5875310000
1.7198252500
1.8521195000

1.9844137500
2.1167080000
2.2490022500
2.3812965000
2.5135907500
2.6458850000
2.7781792500
2.9104735000
3.0427677500
3.1750620000
3.4396505000
3.7042390000
3.9688275000
4.2334160000

4.4980045000
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O' shell Cu2+ shell (in La2cuo4)

542.8291015625
60.8247833252
36.7275238037
22.0542755127
13.1380167007
7.7517919540
4.5262231827
2.6146736145
1.4942407608
0.8446859717
0.4720715284
0.2605223656
0.1416594982
0.0756292343
0.0394121744
0.0198574215
0.0095092952
0.0041861646
0.0003365984
-0.0003234644
-0.0002783721
-0.0001624316
0.0000000000

0.2997787595
0.8289555907
0.9612498283
1.0935440063
1.2258386612

1.3581323624
1.4904270172
1.6227207184
1.7550153732
1.8873100281
2.0196037292
2.1518983841
2.2841920853
2.4164867401
2.5487804413
2.6810750961
2.8133697510
2.9456634521
3.2102518082
3.4748411179
3.7394294739
4.0040178299

4.2686061859

O ' shell La3+ shell (in La2cuo4)

882.1491699219
87.1246337891
54.1404876709
34.6577301025
22.5465850830
14.7073554993
9.5269546509
6.0941724777
3.8388853073
2.3784275055
1.4485931396
0.8670775294
0.5098738074
0.2942909002
0.1663907766
0.0917963386
0.0490405895
0.0250140242
0.0048163049
-0.0003940270
-0.0011931818
-0.0009191367
0.0000000000

0.5926781893
1.1218547821
1.2541494370
1.3864440918
1.5187377930
1.6510324478

1.7833261490
1.9156208038
2.0479145050
2.1802091599
2.3125038147
2.4447975159
2.5770921707
2.7093858719
2.8416805267
2.9739751816
3.1062688828
3.2385635376
3.5031518936
3.7677402496
4.0323286057
4.2969169617

4.5615053177

O ' shell O2' shell (in La2cuo4)



28.7885589600
20.3985900879
14.5848379135
10.4114532471
7.3736085892
5.1634817123
3.5701894760
2.4366798401
1.6419744492
1.0928792953
0.7187412977
0.4670983553
0.2999058366
0.1901011467
0.1187970042
0.0730198026
0.0439856686
0.0146257803
0.0038843702
0.0003951590
-0.0004683670
0.0000000000

0.7702169418
0.9025111794
1.0348052979
1.1670999527

1.2993936539
1.4316883087
1.5639820099
1.6962766647
1.8285713196
1.9608650208
2.0931596756
2.2254533768
2.3577480316
2.4900426865
2.6223363876
2.7546310425
2.8869247437
3.1515130997
3.4161024094
3.6806907654
3.9452791214

4.2098674774

O ' shell Cu2+ shell (in Nd2cuo4)

542.8293977128
60.8248052727
36.7275292614
22.0542845881
13.1380197225
7.7517944697
4.5262247264
2.6146748916
1.4942407942
0.8446862035
0.4720715158
0.2605222913
0.1416593922
0.0756291655
0.0394122287
0.0198572927
0.0095094020
0.0041861835
0.0003366473
-0.0003235842
-0.0002784076
-0.0001624725
0.0000000000

0.3254438550
0.8546208550
0.9869151050
1.1192093550
1.2515036050

1.3837978550
1.5160921050
1.6483863550
1.7806806050
1.9129748550
2.0452691050
2.1775633550
2.3098576050
2.4421518550
2.5744461050
2.7067403550
2.8390346050
2.9713288550
3.2359173550
3.5005058550
3.7650943550
4.0296828550

4.2942713550

O ' shell La3+ shell (in Nd2cuo4)

844.7630581489
87.5313366165
53.5097939517
32.7434580198

0.6244288600
1.1536058600
1.2859001100
1.4181943600



19.8437503027
11.8507585126
6.9624811697
4.0227794229
2.2858766067
1.2776780557
0.7027630997
0.3805791045
0.2030135687
0.1066491605
0.0550838822
0.0278608988
0.0136700036
0.0063941217
0.0009644932
-0.0001676433
-0.0002443891
-0.0001407006
0.0000000000

1.5504886100
1.6827828600

1.8150771100
1.9473713600
2.0796656100
2.2119598600
2.3442541100
2.4765483600
2.6088426100
2.7411368600
2.8734311100
3.0057253600
3.1380196100
3.2703138600
3.5349023600
3.7994908600
4.0640793600
4.3286678600

4.5932563600

O ' shell O2' shell (in Nd2cuo4)

28.7885738551
20.3985897032
14.5848408717
10.4114549127
7.3736108136
5.1634839340
3.5701901796
2.4366804503
1.6419748061
1.0928799096
0.7187414642
0.4670985519
0.2999059444
0.1901012257
0.1187970392
0.0730198087
0.0439856790
0.0146257880
0.0038843711
0.0003951592
-0.0004683670
0.0000000000

0.7702171235
0.9025113735
1.0348056235
1.1670998735

1.2993941235
1.4316883735
1.5639826235
1.6962768735
1.8285711235
1.9608653735
2.0931596235
2.2254538735
2.3577481235
2.4900423735
2.6223366235
2.7546308735
2.8869251235
3.1515136235
3.4161021235
3.6806906235
3.9452791235

4.2098676235
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Appendix 4

The Kroeger-Vink Notation

The Kroeger-Vink (152,153) notation is used throughout this thesis to describe 

point defects, bound clusters and the substitution of impurities at lattice sites. For the 

case of a binary oxide of formula MO the defects that can be present are:

(a) vacant sites; vacant lattice sites on either of the crystal sub-lattices are given as 

VM” and V0" where the superscripts refer to unit charges, ’’’ for negative and for 

positive.

(b) interstitial ions; M f or Oj” interstitials with the superscript referring to unit 

charges.

(c) misplaced ions and solutes; when an M ion is misplaced onto an O site it is 

represented as Mq’” where the subscript gives the type of site that M is on. If an 

impurity (I) with the same charge as the host ion substitutes at the host lattice site it is 

written as IMX. If the impurity is charged such as L3+ then is written as LM- and the 

superscript gives the appropriate charge with respect to the undoped site.

(d) free electrons and holes; in ionic materials, electrons are normally localised at a 

particular atom site in a way that can be described in terms of the ion valence. 

However, this might not always be the case and some fraction of the electrons, 

denoted e’ may not be localised at a particular site. Similarly, missing electrons or 

holes are denoted by h\

(e) bound impurities; defects might associate to form a cluster. These are indicated by 

bracketing the components of such a cluster, e.g. (VM’Vo' )*-



242

Appendix 5

Figures A5.1 to A5.15 are sketches of the {nlO} (n=l,2) and the {10m} 

(m= 1,2,3,4,5,6) surfaces of La2CuC>4 Nd2Cu04. Not that in these figures, copper,

lanthanum, neodymium and oxygen are represented by:

# Cu 

©  La/Nd 

O O



Figure A 5.1: Sketches o f  (a) the (1 1 0 ) and (b) the (2 1 0 ) surfaces o f  La2CuQ4
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(a)

Figure A 5.2: Sketches o f  (a) the {110} and (b) the {210} surfaces o f  N d2C u 0 4



(a) (b)

Figure A5.3: Sketches o f  (a) the {102) and (b) the {104) surfaces o f  LajCuC^



Figure A5.4: Sketch of the {106} surface of LajCuC^



Figure A5.5: Sketches of (a) the {102} and (b) the {104} surfaces of Nd2C u04



Figure A5.6: Sketch of the {106} surface of Nd2C u04



OCu termination O termination

Figure A5.8: Sketches o f  the {101} surfaces o f  La2C u 0 4
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La termination

OCu temination

Figure A 5.9: Sketches o f  the {103} surfaces o f  La2C u 0 4
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O termination

OCu temination

O —

Figure A 5.10: Sketches o f  the {105} surfaces o f  La2C u 0 4



O termination OCu termination

Figure A 5.11: Sketches of the {101} surfaces of Nd2C u04
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OCu termination Nd termination

Figure A5.12: Sketches of the {103} surfaces of Nd2C u04
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Nd termination

OCu termination

Figure A5.13: Sketches of the {105} surfaces o f Nd2C u04



(104)( 102)

Figure A 5 .14: Sketches o f the reconstructed (102) and (104) surfaces of La2C u04



Figure A5.15: Sketch of the reconstructed {106) surface of La2C u04
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