34,401 research outputs found

    Decompositions of ideals of minors meeting a submatrix

    Get PDF
    We compute the primary decomposition of certain ideals generated by subsets of minors in a generic matrix or in a generic symmetric matrix, or subsets of Pfaffians in a generic skew-symmetric matrix. Specifically, the ideals we consider are generated by minors that have at least some given number of rows and columns in certain submatrices.Comment: 10 pages. v2: minor corrections. v3: minor changes, final version to appear in Comm. Al

    The hydrolysis of N-benzoyl-L-argininamide by crystalline trypsin

    Get PDF
    A reinvestigation of the kinetics of hydrolysis of N-benzoyl-n-argininamide by crystalline trypsin has led to the conclusion that the hydrolysis products enter into the over-all reaction as inhibitors

    The competitive inhibition of of the urease-catalyzed hydrolysis of urea by phosphate

    Get PDF
    The urease-catalyzed hydrolysis of urea has been found to be competitively inhibited by phosphate at pH 7.0 and 25°. The Michaelis constant of the urea-urease system has been found to be approximately 0.003 M urea and the comparable constant defining the phosphate-urease system 0.035 M phosphate

    Triplet Superconductors from the Viewpoint of Basic Elements for Quantum Computers

    Get PDF
    We discuss possibilities of utilizing superconductors with Cooper condensates in triplet pairing states (where the spin of condensate pairs is S=1) for practical realization of quantum computers. Superconductors with triplet pairing condensates have features that are unique and cannot be found in the usual (singlet pairing, S=0) superconductors. The symmetry of the order parameter in some triplet superconductors (e.g., ruthenates) corresponds to doubly-degenerate chiral states. These states can serve as qubit base states for quantum computing.Comment: 4 pages, 5 figures, will be presented at ASC-2002 and submitted to IEEE Trans. Appl. Supercon

    Management of invasive Allee species

    Get PDF
    In this study, we use a discrete, two-patch population model of an Allee species to examine different methods in managing invasions. We first analytically examine the model to show the presence of the strong Allee effect, and then we numerically explore the model to test the effectiveness of different management strategies. As expected invasion is facilitated by lower Allee thresholds, greater carrying capacities and greater proportions of dispersers. These effects are interacting, however, and moderated by population growth rate. Using the gypsy moth as an example species, we demonstrate that the effectiveness of different invasion management strategies is context-dependent, combining complementary methods may be preferable, and the preferred strategy may differ geographically. Specifically, we find methods for restricting movement to be more effective in areas of contiguous habitat and high Allee thresholds, where methods involving mating disruptions and raising Allee thresholds are more effective in areas of high habitat fragmentation

    Laser docking sensor engineering model

    Get PDF
    NASA JSC has been involved in the development of Laser sensors for the past ten years in order to support future rendezvous and docking missions, both manned and unmanned. Although many candidate technologies have been breadboarded and evaluated, no sensor hardware designed specifically for rendezvous and docking applications has been demonstrated on-orbit. It has become apparent that representative sensors need to be flown and demonstrated as soon as possible, with minimal cost, to provide the capability of the technology in meeting NASA's future AR&C applications. Technology and commercial component reliability have progressed to where it is now feasible to fly hardware as a detailed test objective minimizing the overall cost and development time. This presentation will discuss the ongoing effort to convert an existing in-house developed breadboard to an engineering model configuration suitable for flight. The modifications include improving the ranger resolution and stability with an in-house design, replacing the rack mounted galvanometric scanner drivers with STD-bus cards, replacing the system controlling personal computer with a microcontroller, and repackaging the subsystems as appropriate. The sensor will use the performance parameters defined in previous JSC requirements working groups as design goals and be built to withstand the space environment where fiscally feasible. Testing of the in-house ranger design is expected to be completed in October. The results will be included in the presentation. Preliminary testing of the ranging circuitry indicates a range resolution of 4mm is possible. The sensor will be mounted in the payload bay on a shelf bracket and have command, control, and display capabilities using the payload general support computer via an RS422 data line
    corecore