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DECOMPOSITIONS OF IDEALS OF MINORS MEETING A
SUBMATRIX

KENT M. NEUERBURG AND ZACH TEITLER

Abstract. We compute the primary decomposition of certain ideals generated by subsets
of minors in a generic matrix or in a generic symmetric matrix, or subsets of Pfaffians in a
generic skew-symmetric matrix. Specifically, the ideals we consider are generated by minors
that have at least some given number of rows and columns in certain submatrices.

1. Introduction

The paper [1] concerns ideals of minors fixing a submatrix, meaning the set of minors in
an m × n matrix that involve all r of the first r columns of the matrix. One of the main
results of that paper, Theorem A, gives the primary decomposition of the ideal generated by
this set of minors. We generalize this to consider minors that involve at least r of the first
a columns:

Theorem 1.1. Let k be a field, let X be a generic m × n matrix, that is X = (xi,j) for
1 ≤ i ≤ m, 1 ≤ j ≤ n, and let R = k[X] = k[xi,j]. Regard X as a block matrix, X = (AB),
where A has size m× a and B has size m× (n− a). Let J be the ideal generated by the set
of t-minors of X that involve at least r columns of A, let It(X) be the ideal generated by the
t-minors of X, and similarly let Ir(A) be the ideal generated by the r-minors of A. Then
J = It(X) ∩ Ir(A).

We generalize further than this, to allow several blocks as well as restrictions on both rows
and columns. We also give similar statements for ideals generated by sets of minors of a
generic symmetric matrix, requiring some number of rows or columns in certain submatrices.
Before we give these statements, we consider one possible application in the setting of the
two-block theorem above.

It is sometimes useful to consider, for a homogeneous ideal I, the ideal I≤d generated
by the forms in I of degree ≤ d. For example, in resolving the singularities of the affine
cone V (I) ⊂ A

n, upon blowing up the origin, the total transform of I may have embedded
components supported along the projective variety V (I≤d), lying in the exceptional divisor
∼= P

n−1, for various d; see [10]. When I is a determinantal ideal, generated by minors of
a matrix whose entries are homogeneous forms, then I≤d is generated by just some of the
minors of the matrix.

Corollary 1.2. Let X = (xi,j) be a generic m × n matrix, regarded as consisting of two
blocks, X = (AB), where A has size m × a and B has size m × (n − a). Fix the ring
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2 KENT M. NEUERBURG AND ZACH TEITLER

R = k[X] = k[xi,j] where every entry in A has degree p and every entry in B has degree
q > p; that is, deg(xi,j) = p if 1 ≤ j ≤ a, deg(xi,j) = q otherwise. Fix t and d. Let It(X)≤d

be the ideal generated by those t-minors of X of degree less than or equal to d, and for each
r let Ir(A) be the ideal generated by the r-minors of A. Then It(X)≤d = It(X) ∩ Ir(A) for
r = � tq−d

q−p
�.

Indeed, a t × t minor M with r columns in A and t − r columns in B will have degree
degM = pr + q(t − r); the value of r in the statement is the least integral solution to
degM ≤ d.

Corollary 1.3. Consider the vector bundles F = Om
PN , G = OPN (p)⊕a ⊕ OPN (q)⊕n−a. Let

f : F → G be a general map, let f ′ : F → OPN (p)⊕a be the induced map, let Δt(f) be the
degeneracy locus, Δt(f) = {x ∈ P

N | rank fx < t}, and let Δt(f)≤d be the locus defined by
the ideal I(Δt(f))≤d. Then Δt(f)≤d = Δt(f) ∪Δr(f

′) for r = � tq−d
q−p

�.
This is similar to [11], which dealt with P

2 and had n = m+ 1 in order to obtain general
Hilbert-Burch matrices of a given type. (In particular [11, Prop. 3.4] simply recreated a
special case of [1, Thm. A].)

Sections 2 and 3 review some background of posets, dosets, algebras with straightening
law, and doset algebras with straightening law. Then we give our results for minors in
generic matrices (Section 4), minors in generic symmetric matrices (Section 5), and Pfaffians
in generic skew-symmetric matrices (Section 6).

Throughout, all rings are commutative with unity.

2. Orders and straightening

A poset (partially ordered set) is a set together with a transitive, reflexive, antisymmetric
relation ≤.

Definition 2.1 ([2, Definition 1.0.3]). A doset of a poset P is a subset D ⊂ P × P such
that

(1) (a, a) ∈ D for all a ∈ P ,
(2) if (a, b) ∈ D then a ≤ b, and
(3) if a ≤ b ≤ c ∈ P , then (a, c) ∈ D if and only if (a, b) ∈ D and (b, c) ∈ D.

Example 2.2. (1) Let [n] = {1, . . . , n} and let Pn = 2[n], the power set of [n]. We order
Pn as follows. For A = {a1 < · · · < as} ⊂ [n] and B = {b1 < · · · < bt} ⊂ [n], A ≤ B
if and only if s ≥ t and ai ≤ bi for i = 1, . . . , t. This makes Pn a poset.

Note, A ≤ B if and only if in the diagram

a1 a2 · · · at · · · as
b1 b2 · · · bt

the first row is at least as long as the second and the entries are weakly increasing
down each column.

(2) Fix m and n. Let Pm,n ⊂ Pm × Pn consist of pairs of subsets (A,B) such that
|A| = |B|, with (A,B) ≤ (A′, B′) if and only if A ≤ A′ and B ≤ B′.

(3) Let Dn ⊂ Pn × Pn consist of pairs (A,B) such that |A| = |B| and A ≤ B. Then Dn

is a doset.

Example 2.3. Here are some key examples of posets and dosets of minors in matrices.
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DECOMPOSITIONS OF IDEALS OF MINORS MEETING A SUBMATRIX 3

(1) Pm,n is the poset of minors (of an m × n matrix): (A,B) ∈ Pm,n corresponds to
the minor with rows indexed by A and columns indexed by B. This poset is usually
denoted Δ(X), where X is an m× n matrix.

(2) Dn is the doset of minors of a symmetric n× n matrix: (A,B) ∈ Dn corresponds
to the minor with rows indexed by A and columns indexed by B. An element of Dn

is called a doset minor. We denote this poset Δs(Y ), where Y is a symmetric n×n
matrix. (It is denoted Δ(Y ) in [2]; we adjoin the s for “symmetric” in order to avoid
ambiguity.)

The condition A ≤ B means that a minor is a doset minor if and only if the main
diagonal of the minor lies in the upper triangle of the matrix (including the diagonal).

(3) Let Pn(2) be the subset of A ∈ Pn such that |A| is even. Then Pn(2) is the poset of
Pfaffians of a skew-symmetric n× n matrix: A ∈ Pn(2) corresponds to the Pfaffian
of the submatrix with rows and columns indexed by A. Following [2] we denote this
poset Π(Z), where Z is a skew-symmetric n× n matrix.

Definition 2.4 ([3, §4.A],[2, Definition 1.0.1]). Let A be a B-algebra and P ⊂ A a subset
with a partial order ≤. Then A is a graded algebra with straightening law (abbreviated
ASL) on P over B if

(1) A =
⊕

i≥0 Ai is a graded B-algebra such that A0 = B, P consists of homogeneous
elements of positive degree, and P generates A as a B-algebra.

(2) A is a free B-module with a basis given by products ξ1 · · · ξm, m ≥ 0, ξi ∈ P , such
that ξ1 ≤ · · · ≤ ξm. These products are called standard monomials.

(3) For all incomparable ξ, ν ∈ P , the product ξν can be written as a combination of
standard monomials

ξν =
∑

aμμ, aμ ∈ B, aμ = 0, μ standard monomial,

in which every μ contains a factor ζ ∈ P such that ζ ≤ ξ and ζ ≤ ν. These are called
straightening relations.

Definition 2.5 ([2, Definition 1.0.4]). Let A be a B-algebra and D ⊂ A a subset such that
D is a doset of a poset P . Then A is a graded doset algebra with straightening law
(abbreviated DASL) on D over B if

(1) A =
⊕

i≥0 Ai is a graded B-algebra such that A0 = B, D consists of homogeneous
elements of positive degree, and D generates A as a B-algebra.

(2) A is a free B-module with a basis given by products (α1, α2) · · · (α2k−1, α2k), k ≥ 1,
(α2i−1, α2i) ∈ D, α1 ≤ · · · ≤ α2k. These products are called standard monomials.

(3) SupposeM = (α1, α2) · · · (α2k−1, α2k), with standard representationM =
∑

λNN ,
0 = λN ∈ B, each N a standard monomial. Let N = (β1, β2) · · · (β2�−1, β2�) be one of
the standard monomials appearing in the standard representation of M . Then for ev-
ery permutation σ of {1, . . . , 2k}, the sequence {ασ(1), . . . , ασ(2k)} is lexicographically
greater than or equal to the sequence (β1, . . . , β2�).

(4) In the notation above, if there is a permutation σ such that ασ(1) ≤ · · · ≤ ασ(2k) then
the standard monomial (ασ(1), ασ(2)) · · · (ασ(2k−1), ασ(2k)) must appear in the standard
representation of M with coefficient ±1.

Example 2.6. Fix an arbitrary commutative ring B with unity.
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4 KENT M. NEUERBURG AND ZACH TEITLER

(1) Let X be an m× n generic matrix, that is X = (xi,j), 1 ≤ i ≤ m, 1 ≤ j ≤ n, the
xi,j variables over B. Then A = B[X] = B[xi,j] is a graded ASL on Δ(X) over B [3,
Chap. 4],[2, Thm. 1.0.5].

(2) Let Y be an n × n generic symmetric matrix, that is Y = (yi,j), 1 ≤ i, j ≤ n,
yi,j = yj,i. Then A = B[Y ] is a graded DASL on Δs(Y ) over B [2, Thm. 1.0.10].

(3) Let Z be an n×n generic skew-symmetric matrix, that is Z = (zi,j), 1 ≤ i, j ≤ n,
zi,j = −zj,i, zi,i = 0. Then A = B[Z] is a graded ASL on Π(Z) over B [2, Thm. 1.0.14].

3. Order ideals

We use ASLs and DASLs entirely for the following properties.

Definition 3.1. Let P be a poset. An order ideal is a subset I ⊂ P such that if α ∈ I
and β ≤ α then β ∈ I. The order ideal generated by S ⊂ P is the smallest order ideal
containing S, that is, {α ∈ P | α ≤ s for some s ∈ S}. The order ideal cogenerated by
S ⊂ P is the largest order ideal disjoint from S, that is, {α ∈ P | α ≤ s for all s ∈ S}.

When A is an ASL on P and I ⊂ P , we write AI for the (ring) ideal generated by I.

Lemma 3.2 ([3, Prop. 5.2]). Let A be an ASL on P and let I, J ⊂ P be ideals. Then
AI ∩ AJ = A(I ∩ J).

We will prove a similar lemma for DASLs. First, we introduce a partial order for dosets.

Definition 3.3. Let D be a doset of P . Then D is a poset with the partial order (a, b) ≤1

(c, d) if and only if a ≤ c in P . A doset order ideal is an order ideal in the poset (D,≤1).
As before, the ideal generated by S ⊂ D is the smallest ideal containing S and the ideal
cogenerated by S ⊂ D is the largest ideal disjoint from S.

A DASL on D is not necessarily an ASL on (D,≤1). Again when A is a DASL on D and
I ⊂ D is a doset order ideal, we write AI for the ring ideal generated by I.

Lemma 3.4. Let A be a DASL on D over B and let I ⊂ D be a doset order ideal. Then AI is
spanned over B by the standard monomials N = (β1, β2) · · · (β2�−1, β2�) such that (β1, β2) ∈ I.

Proof. Let (α1, α2) ∈ I, f ∈ A, and let N = (β1, β2) · · · (β2�−1, β2�) be one of the standard
monomials appearing in the standard representation of (α1, α2)f . The sequence (β1, β2, . . . , β2�)
is lexicographically less than or equal to (α1, α2), so in particular β1 ≤ α1. Hence (β1, β2) ≤1

(α1, α2) and hence (β1, β2) ∈ I. Thus every standard monomial appearing in every element
of AI has a factor in I. �

Lemma 3.5. Let A be a DASL on D and let I, J ⊂ D be ideals. Then AI ∩AJ = A(I ∩J).

Proof. A standard monomial N = (β1, β2) · · · (β2�−1, β2�) appearing in the standard repre-
sentation of an element of AI ∩ AJ has (β1, β2) ∈ I and ∈ J , hence in I ∩ J . This shows
AI ∩ AJ ⊂ A(I ∩ J) and the reverse inclusion is obvious. �

Finally we recall the following results.

Proposition 3.6 ([3, Thm. 6.3]). Let B be a domain, X a generic matrix, A = B[X], and
δ ∈ Δ(X), the poset of minors (see Example 2.3(1)). Let I(X, δ) be the ideal in A generated
by the order ideal cogenerated by δ. Then I(X, δ) is a prime ideal.
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DECOMPOSITIONS OF IDEALS OF MINORS MEETING A SUBMATRIX 5

Proposition 3.7 ([8, Theorem 1], [5, Remark 2.5(a)]). Let B be a domain, Y a generic
symmetric matrix, A = B[Y ], and δ ∈ Δs(Y ), the doset of minors (see Example 2.3(2)). Let
I(Y, δ) be the ideal in A generated by the doset order ideal cogenerated by δ. Then I(Y, δ) is
a prime ideal.

Proposition 3.8 ([2, Thm. 2.1.12]). Let B be a domain, Z a generic skew-symmetric matrix,
A = B[Z], and δ ∈ Π(Z), the poset of Pfaffians (see Example 2.3(3)). Let I(Z, δ) be the
ideal in A generated by the order ideal cogenerated by δ. Then I(Z, δ) is a prime ideal.

4. Minors

We are interested in ideals generated by certain sets of t-minors in a generic matrix X.
Specifically, we will require the generating minors to have at least r1 rows in the first R1

rows of X, at least r2 rows contained in the first R2 rows of X, and so on; and similarly for
columns.

Let X be a generic m × n matrix, X = (xi,j) for 1 ≤ i ≤ m, 1 ≤ j ≤ n, and fix
A = B[X] = B[{xi,j}] for a commutative ring B with unity. For 1 ≤ t ≤ min(m,n), a
t-minor may be specified by listing its rows and columns; we write [a1, . . . , at | b1, . . . , bt],
where 1 ≤ a1 < · · · < at ≤ m and 1 ≤ b1 < · · · < bt ≤ n, for the minor with rows a1, . . . , at
and columns b1, . . . , bt.

Fix sequences 1 ≤ R1 ≤ · · · ≤ Rp ≤ m and 1 ≤ C1 ≤ · · · ≤ Cq ≤ n where p, q ≥ 0.
The sequences R = (R1, . . . , Rp) and C = (C1, . . . , Cq) (possibly empty if p = 0 or q = 0)
describe the division of X into row and column blocks, respectively. Specifically, let XRi

be
the submatrix of X consisting of the first Ri rows and let XCj be the submatrix consisting
of the first Cj columns. Fix also sequences r = (r1, . . . , rp) and c = (c1, . . . , cq).

We are interested in the t-minors that have at least ri rows contained in XRi
and at least

cj columns contained in XCj , for each i, j (with no restriction if p = 0 or q = 0).

Theorem 4.1. Let B be a ring and A = B[X]. Let J = J(X, t, R, C, r, c) be the ideal
generated by t-minors of X that have at least ri rows contained in XRi

for each 1 ≤ i ≤ p
(no restriction if p = 0) and at least cj columns contained in XCj for each 1 ≤ j ≤ q (no
restriction if q = 0). Then

(1) J = It(X) ∩ Ir1(XR1) ∩ · · · ∩ Irp(XRp) ∩ Ic1(X
C1) ∩ · · · ∩ Icq(X

Cq).

Example 4.2. When p = q = 0, J = It(X).
When p = 0 and q = 1, we are in the two-block setting of the Introduction. If also c1 = C1,

we recover [1, Thm. A].

Remark 4.3. We are essentially working with the special case of Mohammadi’s block adja-
cent simplicial complexes [9] in which each block is contained in the previous one and they
all have the last column of the matrix as a common endpoint (in Mohammadi’s indexing;
for us, we take blocks to start at the first column or row). Unlike Mohammadi, we allow
non-maximal minors, we allow restrictions on both the rows and columns appearing in the
minor, and we allow the overlaps between “consecutive” blocks to be arbitrarily large.

Proof. Each of the following sets of minors is an order ideal in Δ(X):

(1) The set of minors of size ≥ t, the generating set of It(X), is the order ideal generated
by [m− t+ 1, . . . ,m | n− t+ 1, . . . , n], or cogenerated by [1, . . . , t− 1 | 1, . . . , t− 1].

(2) The set of (≥ ri)-minors of XRi
is the order ideal generated by [Ri − ri + 1, . . . , Ri |

n−ri+1, . . . , n], or cogenerated by [1, . . . , ri−1, Ri+1, . . . , n | 1, . . . , n−Ri+ri−1].

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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6 KENT M. NEUERBURG AND ZACH TEITLER

(3) Similarly, the set of (≥ cj)-minors of XCj is the order ideal generated by [m −
cj + 1, . . . ,m | Cj − cj + 1, . . . , Cj], or cogenerated by [1, . . . , n − Cj + cj − 1 |
1, . . . , cj − 1, Cj + 1, . . . , n].

By Lemma 3.2, the intersection of the ideals generated by these sets is equal to the ideal
generated by the intersection of the sets. �

Note, if B is a domain this gives J as an intersection of prime ideals. However it may fail
to be a primary decomposition of J , as redundancies may arise in the following ways. For
example, if rj > Rj −Ri then every minor containing at least rj rows of XRj

must contain at
least rj − (Rj −Ri) rows of XRi

; now if ri ≤ rj −Rj +Ri then the condition imposed by ri is
implied by the rj condition and the prime ideal Iri(XRi

) is redundant. Or if t−(m−Ri) ≥ ri
then every t-minor has at least ri rows in XRi

. Finally there are a few trivial situations:
if ri > Ri the whole thing is zero; if Ri = Rj or ri = rj then one condition is obviously
redundant. These are the only possible redundancies as the following proposition shows.

Proposition 4.4. Suppose

(1) R1 < · · · < Rp and C1 < · · · < Cq,
(2) r1 < · · · < rp < t and c1 < · · · < cq < t,
(3) 0 ≤ ri ≤ Ri for each i and 0 ≤ cj ≤ Cj for each j,
(4) R1 − r1 < · · · < Rp − rp < m− t and C1 − c1 < · · · < Cq − cq < n− t.

Then the intersection (1) is irredundant.

Proof. First, fix 1 ≤ i ≤ p. Consider the t-minor

m = [1, . . . , ri − 1, Ri + 1, . . . , t+Ri − ri + 1 | 1, . . . , t].
We use Ri − ri < m − t to verify t + Ri − ri + 1 ≤ m, so this is a permissible t-minor
in an m × n matrix. For each j < i, m has exactly min(ri − 1, Rj) rows in XRj

, and this
is ≥ rj, so m ∈ Irj(XRj

). For each j > i, the number of rows of m in XRj
is either t, if

t+ Ri − ri + 1 ≤ Rj, or else Rj − Ri + ri − 1, if Ri + 1 ≤ Rj ≤ t+ Ri − ri + 1. In the first
case t ≥ rj and in the second case Rj − rj > Ri − ri, so Rj − Ri + ri − 1 ≥ rj; therefore
m ∈ Irj(XRj

). And clearly m has only ri − 1 rows in XRi
. This shows that

m ∈ It(X) ∩ Ir1(XR1) ∩ · · · ∩ Iri−1
(XRi−1

) ∩ Iri+1
(XRi+1

) ∩ · · · ∩ Irp(XRp)

but m /∈ Iri(XRi
). Clearly m ∈ ⋂

Icj(X
Cj). So the term Iri(XRi

) is irredundant for each i.
The same argument shows that each Icj(X

Cj) is irredundant.
Finally consider the (t− 1)-minor

m′ = [1, . . . , t− 1 | 1, . . . , t− 1].

Since each ri < t, m′ has at least ri rows in each XRi
and similarly at least cj columns in

each XCj . This shows that the term It(X) is irredundant. �

5. Minors of symmetric matrices

Now let Y = (yi,j) be a generic symmetric n × n matrix, yi,j = yj,i. Fix sequences
R = (R1, . . . , Rp) with 1 ≤ R1 ≤ · · · ≤ Rp ≤ n and r = (r1, . . . , rp). Let YRi

be the
submatrix consisting of the first Ri rows of Y . We are interested in the t-minors that have
at least ri rows in YRi

for each i. Note, at this point we allow all minors, not only doset
minors.

This is an author-produced, peer-reviewed version of this article. The final, definitive version of this document can be found online at
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DECOMPOSITIONS OF IDEALS OF MINORS MEETING A SUBMATRIX 7

Theorem 5.1. Let B be a ring and A = B[Y ]. Let J = J(Y, t, R, r) be the ideal generated
by t-minors of Y that have at least ri rows contained in YRi

for each 1 ≤ i ≤ p. Then

(2) J = It(Y ) ∩ Ir1(YR1) ∩ · · · ∩ Irp(YRp).

If B is a domain then each Iri(YRi
) is a prime ideal.

Proof. First, by [5, Lemma 2.3], every t-minor [a | b] is a linear combination of doset t-minors
[c | d] with c ≤ a. Thus we can take J to be generated by the doset t-minors meeting the
row conditions.

Next, each of the following sets is a doset order ideal in Δs(Y ):

(1) The set of doset minors of size ≥ t is the doset order ideal generated by [n − t +
1, . . . , n | n− t+ 1, . . . , n].

(2) The set of doset (≥ ri)-minors of YRi
is the doset order ideal generated by [Ri − ri +

1, . . . , Ri | n − ri + 1, . . . , n]. If [a | b] ≤1 [Ri − ri + 1, . . . , Ri | n − ri + 1, . . . , n]
then [a | b] involves at least ri rows of YRi

; by Laplace expansion and [5, Lemma 2.3],
[a | b] is a linear combination of doset ri-minors of YRi

.

This shows that J is the indicated intersection.
The set of doset (≥ t)-minors of Y is cogenerated by [1, . . . , t− 1 | 1, . . . , t− 1]. The set of

doset (≥ ri)-minors of YRi
is cogenerated bym = [1, . . . , ri−1, Ri+1, . . . , n | 1, . . . , ri−1, Ri+

1, . . . , n] [5, Remark 2.5(c)]. Indeed, [a | b] ≥1 m if and only if a ≥ (1, . . . , ri−1, Ri+1, . . . , n),
if and only if |a| ≥ ri and ari ≤ Ri; so [a | b] involves at most ri rows of YRi

. This shows
that each of the ideals being intersected is cogenerated by a single doset element. Therefore
if B is a domain then each of them is a prime ideal by Proposition 3.7. �

If B is a domain then once again this writes J as an intersection of prime ideals, but as
before it may fail to be a primary decomposition because of redundancy.

Proposition 5.2. Suppose

(1) R1 < · · · < Rp,
(2) r1 < · · · < rp < t,
(3) 0 ≤ ri ≤ Ri for each i,
(4) R1 − r1 < · · · < Rp − rp < n− t.

Then the intersection (2) is irredundant.

The proof is the same as before.

6. Pfaffians

Let Z = (zi,j) be an n × n generic skew-symmetric matrix, so that zi,j = −zj,i and
zi,i = 0, and let A = B[Z] = B[{zi,j}]. The Pfaffian of Z, denoted Pf(Z), is a certain
polynomial in the entries of Z, with the property that Pf(Z)2 = det(Z). When n is odd,
Pf(Z) = det(Z) = 0; for n = 2, 4 we have

Pf

(
0 a
−a 0

)
= a, Pf

⎛
⎜⎜⎝

0 a b c
−a 0 d e
−b −d 0 f
−c −e −f 0

⎞
⎟⎟⎠ = af − be+ cd.

In general, for n even,

Pf(Z) =
∑

sgn(σ)zσ(1),σ(2) · · · zσ(n−1),σ(n),
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where the sum is over all permutations σ ∈ Sn such that σ(2i − 1) < σ(2i) for all i and
σ(1) < σ(3) < · · · < σ(2n − 1). Equivalently, the sum is over all unordered partitions of
{1, . . . , 2n} into pairs; the restrictions on σ simply amount to choosing one representative
ordering for each partition. There is a Laplace-like expansion: for each j, 1 ≤ j ≤ n,

Pf(Z) =
∑
i<j

(−1)i+j+1zi,j Pf(Z
i,j) +

∑
i>j

(−1)i+jzi,j Pf(Z
i,j),

where Zi,j is the matrix obtained by deleting the ith and jth rows and columns of Z. See
[4, 6, 7].

A t-Pfaffian of Z is given by a list of t rows and the same columns; we write briefly
[a1, . . . , at], where 1 ≤ a1 < · · · < at ≤ n, for the Pfaffian of the skew-symmetric submatrix
given by the rows a1, . . . , at and the same columns. Of course this is zero if t is odd.
The ideal generated by the size t Pfaffians of Z is denoted Pt(Z). If n is odd then

Pn−1(Z) is a prime ideal of height 3. More generally, P2p(Z) is a prime ideal of height
μ(p, n) = (n− 2p+ 1)(n− 2p+ 2)/2, see [7].

We are interested in the ideal generated by the subset of Pfaffians with at least r1 rows in
the first R1 rows of Z, at least r2 rows in the first R2 rows of Z, and so on; the row condition
implies that these Pfaffians meet the corresponding column conditions as well, i.e., at least
r1 columns in the first R1 columns of Z, and so on.
Fix a sequence 1 ≤ R1 ≤ · · · ≤ Rp ≤ n, R = (R1, . . . , Rp), and another sequence

r = (r1, . . . , rp) of the same length. Let ZRi
be the submatrix of Z consisting of the first

Ri rows and let ZRi
Ri

be the Ri × Ri submatrix of Z in the upper left corner, consisting of
the first Ri rows and the first Ri columns. We will also need, for each Ri + 1 ≤ k ≤ n,
the (Ri + 1)× (Ri + 1) submatrix given by the first Ri rows and columns plus the kth row
and column, that is, the set of rows (and columns) corresponding to the set {1, . . . , Ri, k}.
Recall the common notation [Ri] = {1, . . . , Ri}, so we may write [Ri] ∪ {k} for the set
we want. To simplify notation, we write Z([Ri]) for ZRi

Ri
and we write Z([Ri] ∪ {k}) for

the (Ri + 1) × (Ri + 1) skew-symmetric submatrix of Z given by the rows (and columns)
corresponding to the set {1, . . . , Ri, k}. Since confusion seems unlikely we will drop the
brackets and braces and simply write Z(Ri) and Z(Ri ∪ k). Thus for example

Z(3 ∪ 5) =

⎛
⎜⎜⎝

0 z1,2 z1,3 z1,5
−z1,2 0 z2,3 z2,5
−z1,3 −z2,3 0 z3,5
−z1,5 −z2,5 −z3,5 0

⎞
⎟⎟⎠ ,

with rows and columns given by the set 3 ∪ 5 = [3] ∪ {5} = {1, 2, 3, 5}.
Theorem 6.1. Let B be a ring and A = B[Z]. Let J = J(Z, 2t, R, r) be the ideal generated
by 2t-Pfaffians of Z that have at least ri rows in ZRi

for 1 ≤ i ≤ p. For each i, if ri is even,
let Ji = Pri(Z(Ri)), and if ri is odd, let Ji =

∑n
k=Ri+1 Pri+1(Z(Ri ∪ k)). Then

(3) J = P2t(Z) ∩ J1 ∩ · · · ∩ Jp.

If B is a domain then P2t(Z) is prime and each Ji is a prime ideal.

Proof. Each of the following is an order ideal in Π(Z):

(1) The set of 2t-Pfaffians is the order ideal generated by [n− 2t+ 1, . . . , n].
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(2) The set of Pfaffians (of all sizes) with at least ri rows contained in ZRi
. If ri is even,

this is the order ideal generated by [Ri − ri +1, . . . , Ri]. If ri is odd, this is the order
ideal generated by [Ri − ri + 1, . . . , Ri, n].

So, by Lemma 3.2, J is equal to the intersection of the ideals P2t(Z) and, for each i, the
ideal generated by the Pfaffians (of any size) having at least ri rows in ZRi

.
If ri is even then the ideal generated by Pfaffians with at least ri rows in ZRi

is Pri(Z(Ri)).
Indeed, if P is any Pfaffian with at least ri rows in ZRi

then P can be expanded as a
combination of ri-Pfaffians involving those rows.
If ri is odd and P is any Pfaffian with at least ri rows in ZRi

, then either P actually has
at least ri + 1 rows in ZRi

or else P involves at least one more row, say the kth row, with
k > Ri. Either way, P can be expanded as a combination of (ri + 1)-Pfaffians in Z(Ri ∪ k).
So P lies in the sum given in the statement. Conversely, every Pfaffian generator of the sum
in the statement must have at least ri rows in ZRi

.
Now suppose B is a domain. The set of (≥ 2t)-Pfaffians of Z is cogenerated by [1, . . . , 2t−

2]. This shows P2t(Z) is prime. (Of course P2t(Z) is already well-known to be prime.)
To see that each Ji is prime, note that the order ideal of Pfaffians generating Ji is cogen-

erated by either m = [1, . . . , ri − 1, Ri + 1, . . . , n] or m′ = [1, . . . , ri − 1, Ri + 1, . . . , n − 1],
whichever has even length (regardless of whether ri is even or odd). Let us verify this. For
simplicity, suppose that m has even length. We must show that α ≥ m if and only if α
has at least ri rows in ZRi

, equivalently α ≥ m if and only if α has ri − 1 or fewer rows in
ZRi

; note that this is the criterion whether ri is even or odd. Now α ≥ m if and only if
|α| ≤ ri− 1 or |α| ≥ ri and αri ≥ Ri+1. The forward direction is obvious; conversely, under
these conditions, αri+t ≥ αri + t ≥ Ri + 1 + t = mri+t for all 0 ≤ t ≤ |α| − ri, so each entry
of α is at least as great as the corresponding entry of m; and in particular since every entry
of α is at most n, |α| ≤ |m|. This shows that α ≥ m. So indeed α ≥ m if and only if α has
ri − 1 or fewer rows in ZRi

.
The argument in case |m′| is even is similar. Note that m′ is as long as possible for a

member of Π(Z) with Ri + 1 in the ri position; so if αri ≥ Ri + 1 then |α| ≤ |m′|. �
Once again this writes J as a possibly redundant intersection of prime ideals, if B is a

domain.

Proposition 6.2. Suppose

(1) R1 < · · · < Rp,
(2) r1 < · · · < rp < 2t,
(3) 0 ≤ ri ≤ Ri for each i,
(4) R1 − r1 < · · · < Rp − rp < n− 2t.

Then the intersection (3) is irredundant.

The proof is the same as before.

Corollary 6.3. Let Z = (zi,j) be a generic skew-symmetric matrix, let 0 < p < q, and fix
A = B[Z] with degree deg zi,j = 2p if i, j ≤ R, deg zi,j = p+ q if i ≤ R < j, and deg zi,j = 2q

if i, j > R. Fix t and d. Let r =
⌈
2tq−d
q−p

⌉
. Then P2t(Z)≤d = P2t(Z) ∩ Ir where Ir is the

ideal generated by Pfaffians with at least r rows in ZR. If r is even, Ir = Pr(Z(R)). If r is
odd, Ir =

∑n
k=R+1 Pr+1(Z(R ∪ k)) where Z(R ∪ k) is the (R + 1) × R + 1 skew-symmetric

submatrix of Z given by the rows (and columns) corresponding to the set {1, . . . , R, k}. If B
is a domain then P2t(Z) and Ir are prime.
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Indeed, a 2t-Pfaffian P with r rows in ZR has degree pr + q(2t− r); the value of r in the
statement is the least integral solution to degP ≤ d.
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