9,578 research outputs found

    A proposal for founding mistrustful quantum cryptography on coin tossing

    Full text link
    A significant branch of classical cryptography deals with the problems which arise when mistrustful parties need to generate, process or exchange information. As Kilian showed a while ago, mistrustful classical cryptography can be founded on a single protocol, oblivious transfer, from which general secure multi-party computations can be built. The scope of mistrustful quantum cryptography is limited by no-go theorems, which rule out, inter alia, unconditionally secure quantum protocols for oblivious transfer or general secure two-party computations. These theorems apply even to protocols which take relativistic signalling constraints into account. The best that can be hoped for, in general, are quantum protocols computationally secure against quantum attack. I describe here a method for building a classically certified bit commitment, and hence every other mistrustful cryptographic task, from a secure coin tossing protocol. No security proof is attempted, but I sketch reasons why these protocols might resist quantum computational attack.Comment: Title altered in deference to Physical Review's fear of question marks. Published version; references update

    Coin Tossing is Strictly Weaker Than Bit Commitment

    Full text link
    We define cryptographic assumptions applicable to two mistrustful parties who each control two or more separate secure sites between which special relativity guarantees a time lapse in communication. We show that, under these assumptions, unconditionally secure coin tossing can be carried out by exchanges of classical information. We show also, following Mayers, Lo and Chau, that unconditionally secure bit commitment cannot be carried out by finitely many exchanges of classical or quantum information. Finally we show that, under standard cryptographic assumptions, coin tossing is strictly weaker than bit commitment. That is, no secure classical or quantum bit commitment protocol can be built from a finite number of invocations of a secure coin tossing black box together with finitely many additional information exchanges.Comment: Final version; to appear in Phys. Rev. Let

    Social Support and the Perception of Geographical Slant.

    Get PDF
    The visual perception of geographical slant is influenced by physiological resources, such as physical fitness, age, and being physically refreshed. In two studies we tested whether a psychosocial resource, social support, can also affect the visual perception of slants. Participants accompanied by a friend estimated a hill to be less steep when compared to participants who were alone (Study 1). Similarly, participants who thought of a supportive friend during an imagery task saw a hill as less steep than participants who either thought of a neutral person or a disliked person (Study 2). In both studies, the effects of social relationships on visual perception appear to be mediated by relationship quality (i.e., relationship duration, interpersonal closeness, warmth). Artifacts such as mood, social desirability, and social facilitation did not account for these effects. This research demonstrates that an interpersonal phenomenon, social support, can influence visual perception

    Effects of Domain Wall on Electronic Transport Properties in Mesoscopic Wire of Metallic Ferromagnets

    Full text link
    We study the effect of the domain wall on electronic transport properties in wire of ferromagnetic 3dd transition metals based on the linear response theory. We considered the exchange interaction between the conduction electron and the magnetization, taking into account the scattering by impurities as well. The effective electron-wall interaction is derived by use of a local gauge transformation in the spin space. This interaction is treated perturbatively to the second order. The conductivity contribution within the classical (Boltzmann) transport theory turns out to be negligiblly small in bulk magnets, due to a large thickness of the wall compared with the fermi wavelength. It can be, however, significant in ballistic nanocontacts, as indicated in recent experiments. We also discuss the quantum correction in disordered case where the quantum coherence among electrons becomes important. In such case of weak localization the wall can contribute to a decrease of resistivity by causing dephasing. At lower temperature this effect grows and can win over the classical contribution, in particular in wire of diameter LϕL_{\perp}\lesssim \ell_{\phi}, ϕ\ell_{\phi} being the inelastic diffusion length. Conductance change of the quantum origin caused by the motion of the wall is also discussed.Comment: 30 pages, 4 figures. Detailed paper of Phys. Rev. Lett. 78, 3773 (1997). Submitted to J. Phys. Soc. Jp

    Nuclear power plant performance in the United States and the Federal Republic of Germany.

    Get PDF
    This report presents data comparing the performance of light water reactors in the United States and the Federal Republic of Germany (FRG). The comparisons are made for the years 1980-1983 and include 21 Westinghouse Pressurized Water Reactors (PWRs), 22 General Electric Boiling Water Reactors (BWRs) in the US; and 6 Kraftwerk Union (KWU) PWRs and 4 KWU BWRs in the FRG.Data on capacity losses are presented in a disaggregated form for scheduled outages, forced outages, and regulatory imposed outages. Further, within the scheduled and forced outages, the data is subdivided into losses associated with the nuclear island, the balance of plant, or other causes.The report also surveys a number of observations relating to the causes of discrepancies between the US and West Germany. These observations were obtained from interviews with executives and engineers in both nations, including people from vendors, utilities, regulators, and architect/engineers. These discussions are distilled into observations relating to national differences in the broad areas of economics and economic regulation, safety regulations, and technical and managerial differences

    SAGE measurements of the stratospheric aerosol dispersion and loading from the Soufriere Volcano

    Get PDF
    Explosions of the Soufriere volcano on the Caribbean Island of St. Vincent reduced two major stratospheric plumes which the stratospheric aerosol and gas experiment (SAGE) satellite tracked to West Africa and the North Atlantic Ocean. The total mass of the stratospheric ejecta measured is less than 0.5% of the global stratospheric aerosol burden. No significant temperature or climate perturbation is expected. It is found that the movement and dispersion of the plumes agree with those deduced from high altitude meteorological data and dispersion theory. The stratospheric aerosol dispersion and loading from the Soufrier volcano was measured

    Interagency telemetry arraying for Voyager-Neptune encounter

    Get PDF
    The reception capability of the Deep Space Network (DSN) has been improved over the years by increasing both the size and number of antennas at each complex to meet spacecraft-support requirements. However, even more aperture was required for the final planetary encounters of the Voyager 2 spacecraft. This need was met by arraying one radio astronomy observatory with the DSN complex in the United States and another with the complex in Australia. Following a review of augmentation for the Uranus encounter, both the preparation at the National Radio Astronomy (NRAO) Very Large Array (VLA) and the Neptune encounter results for the Parkes-Canberra and VLA-Goldstone arrays are presented

    Cheat Sensitive Quantum Bit Commitment

    Full text link
    We define cheat sensitive cryptographic protocols between mistrustful parties as protocols which guarantee that, if either cheats, the other has some nonzero probability of detecting the cheating. We give an example of an unconditionally secure cheat sensitive non-relativistic bit commitment protocol which uses quantum information to implement a task which is classically impossible; we also describe a simple relativistic protocol.Comment: Final version: a slightly shortened version of this will appear in PRL. Minor corrections from last versio
    corecore