37,982 research outputs found

    Improvement of indoor VLC network downlink scheduling and resource allocation

    Get PDF
    Indoor visible light communications (VLC) combines illumination and communication by utilizing the high-modulation-speed of LEDs. VLC is anticipated to be complementary to radio frequency communications and an important part of next generation heterogeneous networks. In order to make the maximum use of VLC technology in a networking environment, we need to expand existing research from studies of traditional point-to-point links to encompass scheduling and resource allocation related to multi-user scenarios. This work aims to maximize the downlink throughput of an indoor VLC network, while taking both user fairness and time latency into consideration. Inter-user interference is eliminated by appropriately allocating LEDs to users with the aid of graph theory. A three-term priority factor model is derived and is shown to improve the throughput performance of the network scheduling scheme over those previously reported. Simulations of VLC downlink scheduling have been performed under proportional fairness scheduling principles where our newly formulated priority factor model has been applied. The downlink throughput is improved by 19.6% compared to previous two-term priority models, while achieving similar fairness and latency performance. When the number of users grows larger, the three-term priority model indicates an improvement in Fairness performance compared to two-term priority model scheduling

    X-ray CT analysis after blast of composite sandwich panels

    Get PDF
    Four composite sandwich panels with either single density or graded density foam cores and different face-sheet materials were subjected to full-scale underwater blast testing. The panels were subjected to 1kg PE4 charge at a stand-off distance of 1 m. The panel with graded density core and carbon fiber face-sheets had the lowest deflection. Post-blast damage assessment was carried out using X-ray CT scanning. The damage assessment revealed that there is a trade-off between reduced panel deflection and panel damage. This research has been performed as part of a program sponsored by the Office of Naval Research (ONR)

    Ambulation protocols leading to decreased postoperative complications and hospital stay

    Get PDF
    Background: In the postoperative course, patients are routinely encouraged to ambulate as frequently as possible. Typically in the hospital this can become burdensome to the staff and often becomes low priority. Patients are also not aware of the frequency and quality of the ambulation that is sufficient in the postoperative period. At present, patients on the surgical floor who are completely independent and without any devices (eg. Oxygen, nasogastric tubes, chest tubes) are freely able to ambulate at will although there is no reliable way to track this progress. Other patients with devices are limited to waiting for nursing or ancillary staff to assist them with securing the devices that they require in the postoperative period. Ambulation has been positively associated with decreased postoperative complications ranging from bowel function to deep venous thrombosis to pneumonia.https://jdc.jefferson.edu/patientsafetyposters/1065/thumbnail.jp

    Peaceful Henry : A Slow Drag

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-ps/2586/thumbnail.jp

    An investigation into the incidence and significance of hyperglycemia in certain pathological and physiological conditions

    Get PDF
    (i ) Certain of the advanced cases of cancer and particularly those with a superadded infection showed a hyperglycemis and a delayed blood sugar fall of the mild diabetic type following the ingestion of 50 gms. of glucose. In certain cases also, there appeared to be a raised renal threshold for sugar. (ii) In advanced tuberculosis the fasting blood sugar is raised, end the sugar tolerance tests show a response similar to that shown by a mild case of diabetes. The renal threshold for sugar is also raised. (iii) The fasting blood sugar tends to rise with advancing age. (iv) The fasting blood sugar level in pregnancy is not raised beyond the normal limits. With labour the percentage blood sugar gradually rises to varying levels up to the end of the second stage . During the early days of the puerperium a hyperglycemia exists. The mechanism controlling this hyperglycemia is not known. It is not due to an excessive secretion of the pituitary gland. (v) This hyperglycemia of the puerperium is offered as an explanatory hypothesis of the rapid development of tuberculosis and of the tendency for innocent tumours to become malignant following labour. Also of the lowered resistance to general infections and especially streptococcal infections found during the puerperium. (vi) It is also offered as bearing some relationship to the absence of symptoms following repeated injections of pituitrin in pregnant women and women in the puerperium

    Influence of blade aerodynamic model on prediction of helicopter rotor aeroacoustic signatures

    Get PDF
    Brown’s vorticity transport model has been used to investigate how the local blade aerodynamic model influences the quality of the prediction of the high-frequency airloads associated with blade–vortex interactions, and thus the accuracy with which the acoustic signature of a helicopter rotor can be predicted. The vorticity transport model can accurately resolve the structure of the wake of the rotor and allows significant flexibility in the way that the blade loading can be represented. The Second Higher-Harmonic Control Aeroacoustics Rotor Test was initiated to provide experimental insight into the acoustic signature of a rotor in cases of strong blade–vortex interaction. Predictions of two models for the local blade aerodynamics are compared with the test data. A marked improvement in accuracy of the predicted high-frequency airloads and acoustic signature is obtained when a lifting-chord model for the blade aerodynamics is used instead of a lifting-line-type approach. Errors in the amplitude and phase of the acoustic peaks are reduced, and the quality of the prediction is affected to a lesser extent by the computational resolution of the wake, with the lifting-chord model producing the best representation of the distribution of sound pressure below the rotor

    Modification to the Langley 8-foot high temperature tunnel for hypersonic propulsion testing

    Get PDF
    Described are the modifications currently under way to the Langley 8-Foot High Temperature Tunnel to produce a new, unique national resource for testing hypersonic air-breathing propulsion systems. The current tunnel, which has been used for aerothermal loads and structures research since its inception, is being modified with the addition of a LOX system to bring the oxygen content of the test medium up to that of air, the addition of alternate Mach number capability (4 and 5) to augment the current M=7 capability, improvements to the tunnel hardware to reduce maintenance downtime, the addition of a hydrogen system to allow the testing of hydrogen powered engines, and a new data system to increase both the quantity and quality of the data obtained

    Ab-initio calculation of the Gilbert damping parameter via linear response formalism

    Get PDF
    A Kubo-Greenwood-like equation for the Gilbert damping parameter α\alpha is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker (KKR) band structure method in combination with Coherent Potential Approximation (CPA) alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fex_xCo1x_{1-x} as well as for a series of alloys of permalloy with 5d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of α\alpha when small amounts of substitutional Cu are introduced

    Acoustic sounding in the planetary boundary layer

    Get PDF
    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere
    corecore