1,248 research outputs found
Functional Integral Approach to the Single Impurity Anderson Model
Recently, a functional integral representation was proposed by Weller
(Weller, W.: phys.~stat.~sol.~(b) {\bf 162}, 251 (1990)), in which the
fermionic fields strictly satisfy the constraint of no double occupancy at each
lattice site. This is achieved by introducing spin dependent Bose fields. The
functional integral method is applied to the single impurity Anderson model
both in the Kondo and mixed-valence regime. The f-electron Green's function and
susceptibility are calculated using an Ising-like representation for the Bose
fields. We discuss the difficulty to extract a spectral function from the
knowledge of the imaginary time Green's function. The results are compared with
NCA calculations.Comment: 11 pages, LaTeX, figures upon request, preprint No. 93/10/
Machine-Related Backgrounds in the SiD Detector at ILC
With a multi-stage collimation system and magnetic iron spoilers in the
tunnel, the background particle fluxes on the ILC detector can be substantially
reduced. At the same time, beam-halo interactions with collimators and
protective masks in the beam delivery system create fluxes of muons and other
secondary particles which can still exceed the tolerable levels for some of the
ILC sub-detectors. Results of modeling of such backgrounds in comparison to
those from the e+ e- interactions are presented in this paper for the SiD
detector.Comment: 29 pages, 34 figures, 7 table
Pulse combustion: The quantification of characteristic times
Measurements of the total ignition delay time in a pulse combustor have been made for several chemical kinetic ignition delay times and several fluid dynamic mixing times. These measured total ignition delay times are compared with calculated values of the characteristic time for mixing and with calculated values for the homogeneous ignition delay time. A chemical kinetic model was used to calculate the homogeneous chemical kinetic ignition delay time for conditions typical of an operating pulse combustor. Similarly, a fluid dynamic mixing model was used to estimate characteristic times for a transient jet of cold reactants to mix with an ambient environment of hot products to an ignition temperature. These calculated time scales compared well with measured values in both trend and magnitude. It has also been shown that a simple sum of the characteristic mixing times and chemical kinetics times provides a good first-order approximation to the total ignition delay time.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/28736/1/0000563.pd
Does femtosecond time-resolved second-harmonic generation probe electron temperatures at surfaces?
Femtosecond pump-probe second-harmonic generation (SHG) and transient linear
reflectivity measurements were carried out on polycrystalline Cu, Ag and Au in
air to analyze whether the electron temperature affects Fresnel factors or
nonlinear susceptibilities, or both. Sensitivity to electron temperatures was
attained by using photon energies near the interband transition threshold. We
find that the nonlinear susceptibility carries the electron temperature
dependence in case of Ag and Au, while for Cu the dependence is in the Fresnel
factors. This contrasting behavior emphasizes that SHG is not a priori
sensitive to electron dynamics at surfaces or interfaces, notwithstanding its
cause.Comment: 11 pages, 4 figure
Recommended from our members
Transport and acceleration of high current uranium ion beams
Measurements have been made of the transport of beams produced by the high current ion source, MEVVA, and of the injection of these beams into the GSI heavy ion RFQ linac. This configuration has provided initial tests of the MEVVA ion source in an injector environment, and of the RFQ with uranium as the accelerated species. Beam currents of 78 mA of titanium and 19 mA of uranium, at an extraction voltage of 40 kV, have been transported through a 4.7 m long beam transport channel, and up to 40 mA of uranium has been transported through a single-gap accelerating column at a voltage of about 150 kV. A current of up to 5 mA of UT has been measured at the exit detector of the RFQ
Recommended from our members
Quantitative plant proteomics using hydroponic isotope labeling of entire plants (HILEP)
Effective swimming strategies in low Reynolds number flows
The optimal strategy for a microscopic swimmer to migrate across a linear
shear flow is discussed. The two cases, in which the swimmer is located at
large distance, and in the proximity of a solid wall, are taken into account.
It is shown that migration can be achieved by means of a combination of sailing
through the flow and swimming, where the swimming strokes are induced by the
external flow without need of internal energy sources or external drives. The
structural dynamics required for the swimmer to move in the desired direction
is discussed and two simple models, based respectively on the presence of an
elastic structure, and on an orientation dependent friction, to control the
deformations induced by the external flow, are analyzed. In all cases, the
deformation sequence is a generalization of the tank-treading motion regimes
observed in vesicles in shear flows. Analytic expressions for the migration
velocity as a function of the deformation pattern and amplitude are provided.
The effects of thermal fluctuations on propulsion have been discussed and the
possibility that noise be exploited to overcome the limitations imposed on the
microswimmer by the scallop theorem have been discussed.Comment: 14 pages, 5 figure
Adiabatic spin pumping through a quantum dot with a single orbital level
We investigate an adiabatic spin pumping through a quantum dot with a single
orbital energy level under the Zeeman effect. Electron pumping is produced by
two periodic time dependent parameters, a magnetic field and a difference of
the dot-lead coupling between the left and right barriers of the dot. The
maximum charge transfer per cycle is found to be , the unit charge in the
absence of a localized moment in the dot. Pumped charge and spin are different,
and spin pumping is possible without charge pumping in a certain situation.
They are tunable by changing the minimum and maximum value of the magnetic
field.Comment: RevTeX4, 5 pages, 3 figure
On the recurrence and robust properties of Lorenz'63 model
Lie-Poisson structure of the Lorenz'63 system gives a physical insight on its
dynamical and statistical behavior considering the evolution of the associated
Casimir functions. We study the invariant density and other recurrence features
of a Markov expanding Lorenz-like map of the interval arising in the analysis
of the predictability of the extreme values reached by particular physical
observables evolving in time under the Lorenz'63 dynamics with the classical
set of parameters. Moreover, we prove the statistical stability of such an
invariant measure. This will allow us to further characterize the SRB measure
of the system.Comment: 44 pages, 7 figures, revised version accepted for pubblicatio
Dissipation and noise in adiabatic quantum pumps
We investigate the distribution function, the heat flow and the noise
properties of an adiabatic quantum pump for an arbitrary relation of pump
frequency and temperature. To achieve this we start with the
scattering matrix approach for ac-transport. This approach leads to expressions
for the quantities of interest in terms of the side bands of particles exiting
the pump. The side bands correspond to particles which have gained or lost a
modulation quantum . We find that our results for the pump
current, the heat flow and the noise can all be expressed in terms of a
parametric emissivity matrix. In particular we find that the current
cross-correlations of a multiterminal pump are directly related a to a
non-diagonal element of the parametric emissivity matrix. The approach allows a
description of the quantum statistical correlation properties (noise) of an
adiabatic quantum pump
- …