8,832 research outputs found

    Explanation and Cognition

    Get PDF
    These essays draw on work in the history and philosophy of science, the philosophy of mind and language, the development of concepts in children, conceptual.

    Explaining Explanation

    Get PDF
    It is not a particularly hard thing to want or seek explanations. In fact, explanations seem to be a large and natural part of our cognitive lives. Children ask why and how questions very early in development and seem genuinely to want some sort of answer, despite our often being poorly equipped to provide them at the appropriate level of sophistication and detail. We seek and receive explanations in every sphere of our adult lives, whether it be to understand why a friendship has foundered, why a car will not start, or why ice expands when it freezes. Moreover, correctly or incorrectly, most of the time we think we know when we have or have not received a good explanation. There is a sense both that a given, successful explanation satisfies a cognitive need, and that a questionable or dubious explanation does not. There are also compelling intuitions about what make good explanations in terms of their form, that is, a sense of when they are structured correctly

    Fallstudie zur liquiditätsorientierten Ausschreibungsplanung bei langfristiger Einzelfertigung (2., überarbeitete Auflage)

    Full text link

    Bosnia and Herzegovina twenty years after Dayton: complexity born of paradoxes

    Get PDF
    This paper will start with an analysis of the Dayton Peace Agreement, and assess to what extent it focused on peace-building, state-reconstruction and democratization. It will provide an overview of major peace-building, state-reconstruction and democratization initiatives by international and local actors in post-war Bosnia. Following the often-presented argument that “Dayton is a good peace agreement but a bad blueprint for a democratic state,” the paper will ask if the Dayton Peace Agreement has failed in the consolidation of Bosnian statehood and the democratization of the country. In order to do this, an in-depth analysis of the current situation in terms of state consolidation and democratization will be given. The main argument of the paper demonstrates that while the Dayton Agreement had some inherent weaknesses, actions by local elites and international state-builders also explain some of the current issues of the Bosnian state

    Zum Entwicklungsstand eines controlling immaterieller Vorleistungen

    Full text link
    Das Controlling immaterieller Vorleistungen beschäftigt sich mit dem Problem der Transformation von immateriellen Vorleistungskosten in Kosten der betrieblichen Erzeugnisse. Dieses Problem ist in der Kosten- und Leistungsrechnung bisher nur unzureichend gelöst. Es geht konform mit dem Problem der produktorientierten Zurechnung von Kosten offener Perioden

    Adsorption of cobalt on graphene: Electron correlation effects from a quantum chemical perspective

    Get PDF
    In this work, we investigate the adsorption of a single cobalt atom (Co) on graphene by means of the complete active space self-consistent field approach, additionally corrected by the second-order perturbation theory. The local structure of graphene is modeled by a planar hydrocarbon cluster (C24_{24}H12_{12}). Systematic treatment of the electron correlations and the possibility to study excited states allow us to reproduce the potential energy curves for different electronic configurations of Co. We find that upon approaching the surface, the ground-state configuration of Co undergoes several transitions, giving rise to two stable states. The first corresponds to the physisorption of the adatom in the high-spin 3d74s23d^74s^2 (S=3/2S=3/2) configuration, while the second results from the chemical bonding formed by strong orbital hybridization, leading to the low-spin 3d93d^9 (S=1/2S=1/2) state. Due to the instability of the 3d93d^9 configuration, the adsorption energy of Co is small in both cases and does not exceed 0.35 eV. We analyze the obtained results in terms of a simple model Hamiltonian that involves Coulomb repulsion (UU) and exchange coupling (JJ) parameters for the 3dd shell of Co, which we estimate from first-principles calculations. We show that while the exchange interaction remains constant upon adsorption (1.1\simeq1.1 eV), the Coulomb repulsion significantly reduces for decreasing distances (from 5.3 to 2.6±\pm0.2 eV). The screening of UU favors higher occupations of the 3dd shell and thus is largely responsible for the interconfigurational transitions of Co. Finally, we discuss the limitations of the approaches that are based on density functional theory with respect to transition metal atoms on graphene, and we conclude that a proper account of the electron correlations is crucial for the description of adsorption in such systems.Comment: 12 pages, 6 figures, 2 table

    Interfacial interactions between local defects in amorphous SiO2_2 and supported graphene

    Full text link
    We present a density functional study of graphene adhesion on a realistic SiO2_2 surface taking into account van der Waals (vdW) interactions. The SiO2_2 substrate is modeled at the local scale by using two main types of surface defects, typical for amorphous silica: the oxygen dangling bond and three-coordinated silicon. The results show that the nature of adhesion between graphene and its substrate is qualitatively dependent on the surface defect type. In particular, the interaction between graphene and silicon-terminated SiO2_2 originates exclusively from the vdW interaction, whereas the oxygen-terminated surface provides additional ionic contribution to the binding arising from interfacial charge transfer (pp-type doping of graphene). Strong doping contrast for the different surface terminations provides a mechanism for the charge inhomogeneity of graphene on amorphous SiO2_2 observed in experiments. We found that independent of the considered surface morphologies, the typical electronic structure of graphene in the vicinity of the Dirac point remains unaltered in contact with the SiO2_2 substrate, which points to the absence of the covalent interactions between graphene and amorphous silica. The case of hydrogen-passivated SiO2_2 surfaces is also examined. In this situation, the binding with graphene is practically independent of the type of surface defects and arises, as expected, from the vdW interactions. Finally, the interface distances obtained are shown to be in good agreement with recent experimental studies.Comment: 10 pages, 4 figure

    Graphene adhesion on mica: Role of surface morphology

    Get PDF
    We investigate theoretically the adhesion and electronic properties of graphene on a muscovite mica surface using the density functional theory (DFT) with van der Waals (vdW) interactions taken into account (the vdW-DF approach). We found that irregularities in the local structure of cleaved mica surface provide different mechanisms for the mica-graphene binding. By assuming electroneutrality for both surfaces, the binding is mainly of vdW nature, barely exceeding thermal energy per carbon atom at room temperature. In contrast, if potassium atoms are non uniformly distributed on mica, the different regions of the surface give rise to nn- or pp-type doping of graphene. In turn, an additional interaction arises between the surfaces, significantly increasing the adhesion. For each case the electronic states of graphene remain unaltered by the adhesion. It is expected, however, that the Fermi level of graphene supported on realistic mica could be shifted relative to the Dirac point due to asymmetry in the charge doping. Obtained variations of the distance between graphene and mica for different regions of the surface are found to be consistent with recent atomic force microscopy experiments. A relative flatness of mica and the absence of interlayer covalent bonding in the mica-graphene system make this pair a promising candidate for practical use.Comment: 6 pages, 3 figure

    Adsorption of diatomic halogen molecules on graphene: A van der Waals density functional study

    Get PDF
    The adsorption of fluorine, chlorine, bromine, and iodine diatomic molecules on graphene has been investigated using density functional theory with taking into account nonlocal correlation effects by means of vdW-DF approach. It is shown that the van der Waals interaction plays a crucial role in the formation of chemical bonding between graphene and halogen molecules, and is therefore important for a proper description of adsorption in this system. In-plane orientation of the molecules has been found to be more stable than the orientation perpendicular to the graphene layer. In the cases of F2_2, Br2_2 and I2_2 we also found an ionic contribution to the binding energy, slowly vanishing with distance. Analysis of the electronic structure shows that ionic interaction arises due to the charge transfer from graphene to the molecules. Furthermore, we found that the increase of impurity concentration leads to the conduction band formation in graphene due to interaction between halogen molecules. In addition, graphite intercalation by halogen molecules has been investigated. In the presence of halogen molecules the binding between graphite layers becomes significantly weaker, which is in accordance with the results of recent experiments on sonochemical exfoliation of intercalated graphite.Comment: Submitted to PR
    corecore