8 research outputs found

    A Comparison of the Pitfall Trap, Winkler Extractor and Berlese Funnel for Sampling Ground-Dwelling Arthropods in Tropical Montane Cloud Forests

    Get PDF
    Little is known about the ground-dwelling arthropod diversity in tropical montane cloud forests (TMCF). Due to unique habitat conditions in TMCFs with continuously wet substrates and a waterlogged forest floor along with the innate biases of the pitfall trap, Berlese funnel and Winkler extractor are certain to make it difficult to choose the most appropriate method to sample the ground-dwelling arthropods in TMCFs. Among the three methods, the Winkler extractor was the most efficient method for quantitative data and pitfall trapping for qualitative data for most groups. Inclusion of floatation method as a complementary method along with the Winkler extractor would enable a comprehensive quantitative survey of ground-dwelling arthropods. Pitfall trapping is essential for both quantitative and qualitative sampling of Diplopoda, Opiliones, Orthoptera, and Diptera. The Winkler extractor was the best quantitative method for Psocoptera, Araneae, Isopoda, and Formicidae; and the Berlese funnel was best for Collembola and Chilopoda. For larval forms of different insect orders and the Acari, all the three methods were equally effective

    Interactive effects of fire, rainfall, and litter quality on decomposition in savannas: frequent fire leads to contrasting effects

    Get PDF
    One of the many ecological processes expected to undergo alteration due to global change is the decomposition of organic matter, with little known concerning the effects that changing disturbance regimes may have. Fire, a critical process in many habitats, is expected to become more common. We measured the decomposition rates of four grass species that differed in litter quality, investigating them under different fire regimes across a savanna rainfall gradient in South Africa. We also collected data on the abundance and activity of fungus-growing termites and recorded measurements of temperature and canopy cover. Overall, decomposition rate followed global models, increasing under warmer and wetter conditions. Litter quality was also significant with higher quality grasses decomposing faster; however, this effect was less pronounced than expected. Fire regimes did not have a consistent effect on decomposition rate along the rainfall gradient. In the most arid savanna type examined, fire had no effect, whereas in the intermediate rainfall savanna burning increased decomposition rate under higher levels of fungus-growing termite activity. In the wetter savannas, fire slowed decomposition, possibly through modification of vegetation structure and potential effects on other invertebrates. Our results demonstrate that grass decomposition in African savannas varies significantly along precipitation gradients, with different factors becoming influential in different habitats. Importantly, we demonstrate that fire does not always act to slow decomposition and that it interacts with other factors to influence the process. These findings have important implications for decomposition in the light of global change models that predict wetter climates and a higher frequency of fires for southern African savannas
    corecore