227 research outputs found

    Delusional beliefs and reason giving

    Get PDF
    Delusions are often regarded as irrational beliefs, but their irrationality is not sufficient to explain what is pathological about them. In this paper we ask whether deluded subjects have the capacity to support the content of their delusions with reasons, that is, whether they can author their delusional states. The hypothesis that delusions are characterised by a failure of authorship, which is a dimension of self knowledge, deserves to be empirically tested because (a) it has the potential to account for the distinction between endorsing a delusion and endorsing a framework belief; (b) it contributes to a philosophical analysis of the relationship between rationality and self knowledge; and (c) it informs diagnosis and therapy in clinical psychiatry. However, authorship cannot provide a demarcation criterion between delusions and other irrational belief states

    Evolution of regulatory signatures in primate cortical neurons at cell-type resolution

    Get PDF
    The human cerebral cortex contains many cell types that likely underwent independent functional changes during evolution. However, cell-type-specific regulatory landscapes in the cortex remain largely unexplored. Here we report epigenomic and transcriptomic analyses of the two main cortical neuronal subtypes, glutamatergic projection neurons and GABAergic interneurons, in human, chimpanzee, and rhesus macaque. Using genome-wide profiling of the H3K27ac histone modification, we identify neuron-subtype-specific regulatory elements that previously went undetected in bulk brain tissue samples. Human-specific regulatory changes are uncovered in multiple genes, including those associated with language, autism spectrum disorder, and drug addiction. We observe preferential evolutionary divergence in neuron subtype-specific regulatory elements and show that a substantial fraction of pan-neuronal regulatory elements undergoes subtype-specific evolutionary changes. This study sheds light on the interplay between regulatory evolution and cell-type-dependent gene-expression programs, and provides a resource for further exploration of human brain evolution and function

    Fine-scale spatial variability of heat-related mortality in Philadelphia County, USA, from 1983-2008: a case-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High temperature and humidity conditions are associated with short-term elevations in the mortality rate in many United States cities. Previous research has quantified this relationship in an aggregate manner over large metropolitan areas, but within these areas the response may differ based on local-scale variability in climate, population characteristics, and socio-economic factors.</p> <p>Methods</p> <p>We compared the mortality response for 48 Zip Code Tabulation Areas (ZCTAs) comprising Philadelphia County, PA to determine if certain areas are associated with elevated risk during high heat stress conditions. A randomization test was used to identify mortality exceedances for various apparent temperature thresholds at both the city and local scale. We then sought to identify the environmental, demographic, and social factors associated with high-risk areas via principal components regression.</p> <p>Results</p> <p>Citywide mortality increases by 9.3% on days following those with apparent temperatures over 34°C observed at 7:00 p.m. local time. During these conditions, elevated mortality rates were found for 10 of the 48 ZCTAs concentrated in the west-central portion of the County. Factors related to high heat mortality risk included proximity to locally high surface temperatures, low socioeconomic status, high density residential zoning, and age.</p> <p>Conclusions</p> <p>Within the larger Philadelphia metropolitan area, there exists statistically significant fine-scale spatial variability in the mortality response to high apparent temperatures. Future heat warning systems and mitigation and intervention measures could target these high risk areas to reduce the burden of extreme weather on summertime morbidity and mortality.</p

    Evolutionary Dynamics of Co-Segregating Gene Clusters Associated with Complex Diseases

    Get PDF
    BACKGROUND: The distribution of human disease-associated mutations is not random across the human genome. Despite the fact that natural selection continually removes disease-associated mutations, an enrichment of these variants can be observed in regions of low recombination. There are a number of mechanisms by which such a clustering could occur, including genetic perturbations or demographic effects within different populations. Recent genome-wide association studies (GWAS) suggest that single nucleotide polymorphisms (SNPs) associated with complex disease traits are not randomly distributed throughout the genome, but tend to cluster in regions of low recombination. PRINCIPAL FINDINGS: Here we investigated whether deleterious mutations have accumulated in regions of low recombination due to the impact of recent positive selection and genetic hitchhiking. Using publicly available data on common complex diseases and population demography, we observed an enrichment of hitchhiked disease associations in conserved gene clusters subject to selection pressure. Evolutionary analysis revealed that these conserved gene clusters arose by multiple concerted rearrangements events across the vertebrate lineage. We observed distinct clustering of disease-associated SNPs in evolutionary rearranged regions of low recombination and high gene density, which harbor genes involved in immunity, that is, the interleukin cluster on 5q31 or RhoA on 3p21. CONCLUSIONS: Our results suggest that multiple lineage specific rearrangements led to a physical clustering of functionally related and linked genes exhibiting an enrichment of susceptibility loci for complex traits. This implies that besides recent evolutionary adaptations other evolutionary dynamics have played a role in the formation of linked gene clusters associated with complex disease traits

    Mesenchymal Stem Cells in Early Entry of Breast Cancer into Bone Marrow

    Get PDF
    BACKGROUND: An understanding of BC cell (BCC) entry into bone marrow (BM) at low tumor burden is limited when compared to highly metastatic events during heavy tumor burden. BCCs can achieve quiescence, without interfering with hematopoiesis. This occurs partly through the generation of gap junctions with BM stroma, located close to the endosteum. These events are partly mediated by the evolutionary conserved gene, Tac1. METHODOLOGY/PRINCIPAL FINDINGS: This study focuses on the role of mesenchymal stem cells (MSCs), Tac1, SDF-1 and CXCR4 in BCC entry into BM. The model is established in studies with low numbers of tumor cells, and focuses on cancer cells with low metastatic and invasion potential. This allowed us to recapitulate early event, and to study cancer cells with low invasive potential, even when they are part of larger numbers of highly metastatic cells. A novel migration assay showed a facilitating role of MSCs in BCC migration across BM endothelial cells. siRNA and ectopic expression studies showed a central role for Tac1 and secondary roles for SDF-1alpha and CXCR4. We also observed differences in the mechanisms between low invasive and highly metastatic cells. The in vitro studies were verified in xenogeneic mouse models that showed a preference for low invasive BCCs to BM, but comparable movement to lung and BM by highly metastatic BCCs. The expressions of Tac1 and production of SDF-1alpha were verified in primary BCCs from paired samples of BM aspirates and peripheral blood. CONCLUSIONS/SIGNIFICANCE: MSC facilitate BCC entry into BM, partly through Tac1-mediated regulation of SDF-1alpha and CXCR4. We propose a particular population of BCC with preference for BM could be isolated for characterization. This population might be the subset that enter BM at an early time period, and could be responsible for cancer resurgence and resistance to current therapies

    How does it feel to act together?

    Get PDF
    This paper on the phenomenology of joint agency proposes a foray into a little explored territory at the intersection of two very active domains of research: joint action and sense of agency. I explore two ways in which our experience of joint agency may differ from our experience of individual agency. First, the mechanisms of action specification and control involved in joint action are typically more complex than those present in individual actions, since it is crucial for joint action that people coordinate their plans and actions. I discuss the implications that these coordination requirements might have for the strength of the sense of agency an agent may experience for a joint action. Second, engagement in joint action may involve a transformation of agentive identity and a partial or complete shift from a sense of self-agency to a sense of we-agency. I discuss several factors that may contribute to shaping our sense of agentive identity in joint action

    The neural substrate of positive bias in spontaneous emotional processing

    Get PDF
    Even in the presence of negative information, healthy human beings display an optimistic tendency when thinking of past success and future chances, giving a positive bias to everyday's cognition. The tendency to actively select positive thoughts suggests the existence of a mechanism to exclude negative content, raising the issue of its dependence on mechanisms like those of effortful control. Using perfusion imaging, we examined how brain activations differed according to whether participants were left to prefer positive thoughts spontaneously, or followed an explicit instruction to the same effect, finding a widespread dissociation of brain perfusion patterns. Under spontaneous processing of emotional material, recruitment of areas associated with effortful attention, such as the dorsolateral prefrontal cortex, was reduced relative to instructed avoidance of negative material (F(1,58) = 26.24, p = 0.047, corrected). Under spontaneous avoidance perfusion increments were observed in several areas that were deactivated by the task, including the perigenual medial prefrontal cortex. Furthermore, individual differences in executive capacity were not associated with positive bias. These findings suggest that spontaneous positive cognitive emotion regulation in health may result from processes that, while actively suppressing emotionally salient information, differ from those associated with effortful and directed control

    Induction of protein citrullination and auto-antibodies production in murine exposed to nickel

    Get PDF
    Abstract Citrullination, or the post-translational deimination of polypeptide-bound arginine, is involved in several pathological processes in the body, including autoimmunity and tumorigenesis. Recent studies have shown that nanomaterials can trigger protein citrullination, which might constitute a common pathogenic link to disease development. Here we demonstrated auto-antibody production in serum of nanomaterials-treated mice. Citrullination-associated phenomena and PAD levels were found to be elevated in nanomaterials -treated cell lines as well as in the spleen, kidneys and lymph nodes of mice, suggesting a systemic response to nanomaterials injection, and validated in human pleural and pericardial malignant mesothelioma (MM) samples. The observed systemic responses in mice exposed to nanomaterials support the evidence linking exposure to environmental factors with the development of autoimmunity responses and reinforces the need for comprehensive safety screening of nanomaterials. Furthermore, these nanomaterials induce pathological processes that mimic those observed in Pleural MM, and therefore require further investigations into their carcinogenicity
    corecore