696 research outputs found

    Transport Study of Charge Carrier Scattering in Monolayer WSe2_2

    Full text link
    Employing flux-grown single crystal WSe2_2, we report charge carrier scattering behaviors measured in hh-BN encapsulated monolayer field effect transistors. We perform quantum transport measurements across various hole densities and temperatures and observe a non-monotonic change of transport mobility μ\mu as a function of hole density in the degenerately doped sample. This unusual behavior can be explained by energy dependent scattering amplitude of strong defects calculated using the T-matrix approximation. Utilizing long mean-free path (>>500 nm), we demonstrate the high quality of our electronic devices by showing quantized conductance steps from an electrostatically-defined quantum point contact. Our results show the potential for creating ultra-high quality quantum optoelectronic devices based on atomically thin semiconductors.Comment: 6 pages, 4 figure

    Deception in context: coding nonverbal cues, situational variables and risk of detection

    Get PDF
    There are many situations in which deception may arise and understanding the behaviors associated with it are compounded by various contexts in which it may occur. This paper sets out a coding protocol for identifying cues to deception and reports on three studies, in which deception was studied in different contexts. The contexts involved manipulating risks (i.e., probability) of being detected and reconnaissance, both of which are related to terrorist activities. Two of the studies examined the impact of changing the risks of deception detection, whilst the third investigated increased cognitive demand of duplex deception tasks including reconnaissance and deception. In all three studies, cues to deception were analyzed in relation to observable body movements and subjective impressions given by participants. In general, the results indicate a pattern of hand movement reduction by deceivers, and suggest the notion that raising the risk of detection influences deceivers? behaviors. Participants in the higher risk condition displayed increased negative affect (found in deceivers) and tension (found in both deceivers and truth-tellers) than those in lower risk conditions

    A prospective study to evaluate the accuracy of pulse power analysis to monitor cardiac output in critically ill patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Intermittent measurement of cardiac output may be performed using a lithium dilution technique (LiDCO). This can then be used to calibrate a pulse power algorithm of the arterial waveform which provides a continuous estimate of this variable. The purpose of this study was to examine the duration of accuracy of the pulse power algorithm in critically ill patients with respect to time when compared to measurements of cardiac output by an independent technique.</p> <p>Methods</p> <p>Pulse power analysis was performed on critically ill patients using a proprietary commercial monitor (PulseCO). All measurements were made using an in-dwelling radial artery line and according to manufacturers instructions. Intermittent measurements of cardiac output were made with LiDCO in order to validate the pulse power measurements. These were made at baseline and then following 1, 2, 4 and 8 hours. The LiDCO measurement was considered the reference for comparison in this study. The two methods of measuring cardiac output were then compared by linear regression and a Bland Altman analysis. An error rate for the limits of agreement (LOA) between the two techniques of less than 30% was defined as being acceptable for this study.</p> <p>Results</p> <p>14 critically ill medical and surgical patients were enrolled over a three month period. At baseline patients showed a wide range of cardiac output (median 7.5 L/min, IQR 5.1 -9.0 L/min). The bias and limits of agreement between the two techniques was deemed acceptable for the first four hours of the study with percentage errors being 29%, 22%, and 285 respectively. The percentage error at eight hours following calibration increased to 36%. The ability of the PulseCo to detect changes in cardiac output was assessed with a similar analysis. The PulseCO tracked the changes in cardiac output with adequate accuracy for the first four hours with percentage errors being 20%, 24% and 25%. However at eight hours the error had increased to 43%.</p> <p>Conclusion</p> <p>The agreement between lithium dilution cardiac output and the pulse power algorithm in the PulseCO monitor remains acceptable for up to four hours in critically ill patients.</p

    Identification of chemokine receptors as potential modulators of endocrine resistance in oestrogen receptor–positive breast cancers

    Get PDF
    Introduction Endocrine therapies target oestrogenic stimulation of breast cancer (BC) growth, but resistance remains problematic. Our aims in this study were (1) to identify genes most strongly associated with resistance to endocrine therapy by intersecting global gene transcription data from patients treated presurgically with the aromatase inhibitor anastrazole with those from MCF7 cells adapted to long-term oestrogen deprivation (LTED) (2) to assess the clinical value of selected genes in public clinical data sets and (3) to determine the impact of targeting these genes with novel agents. Methods Gene expression and Ki67 data were available from 69 postmenopausal women with oestrogen receptor–positive (ER+) early BC, at baseline and 2 weeks after anastrazole treatment, and from cell lines adapted to LTED. The functional consequences of target genes on proliferation, ER-mediated transcription and downstream cell signalling were assessed. Results By intersecting genes predictive of a poor change in Ki67 with those upregulated in LTED cells, we identified 32 genes strongly correlated with poor antiproliferative response that were associated with inflammation and/or immunity. In a panel of LTED cell lines, C-X-C chemokine receptor type 7 (CXCR7) and CXCR4 were upregulated compared to their wild types (wt), and CXCR7, but not CXCR4, was associated with reduced relapse-free survival in patients with ER+ BC. The CXCR4 small interfering RNA variant (siCXCR4) had no specific effect on the proliferation of wt-SUM44, wt-MCF7 and their LTED derivatives. In contrast, siCXCR7, as well as CCX733, a CXCR7 antagonist, specifically suppressed the proliferation of MCF7-LTED cells. siCXCR7 suppressed proteins associated with G1/S transition and inhibited ER transactivation in MCF7-LTED, but not wt-MCF7, by impeding association between ER and proline-, glutamic acid– and leucine-rich protein 1, an ER coactivator. Conclusions These data highlight CXCR7 as a potential therapeutic target warranting clinical investigation in endocrine-resistant BC

    The actin-myosin regulatory MRCK kinases: regulation, biological functions and associations with human cancer

    Get PDF
    The contractile actin-myosin cytoskeleton provides much of the force required for numerous cellular activities such as motility, adhesion, cytokinesis and changes in morphology. Key elements that respond to various signal pathways are the myosin II regulatory light chains (MLC), which participate in actin-myosin contraction by modulating the ATPase activity and consequent contractile force generation mediated by myosin heavy chain heads. Considerable effort has focussed on the role of MLC kinases, and yet the contributions of the myotonic dystrophy-related Cdc42-binding kinases (MRCK) proteins in MLC phosphorylation and cytoskeleton regulation have not been well characterized. In contrast to the closely related ROCK1 and ROCK2 kinases that are regulated by the RhoA and RhoC GTPases, there is relatively little information about the CDC42-regulated MRCKα, MRCKβ and MRCKγ members of the AGC (PKA, PKG and PKC) kinase family. As well as differences in upstream activation pathways, MRCK and ROCK kinases apparently differ in the way that they spatially regulate MLC phosphorylation, which ultimately affects their influence on the organization and dynamics of the actin-myosin cytoskeleton. In this review, we will summarize the MRCK protein structures, expression patterns, small molecule inhibitors, biological functions and associations with human diseases such as cancer

    Guillain-Barré syndrome: a century of progress

    Get PDF
    In 1916, Guillain, Barré and Strohl reported on two cases of acute flaccid paralysis with high cerebrospinal fluid protein levels and normal cell counts — novel findings that identified the disease we now know as Guillain–Barré syndrome (GBS). 100 years on, we have made great progress with the clinical and pathological characterization of GBS. Early clinicopathological and animal studies indicated that GBS was an immune-mediated demyelinating disorder, and that severe GBS could result in secondary axonal injury; the current treatments of plasma exchange and intravenous immunoglobulin, which were developed in the 1980s, are based on this premise. Subsequent work has, however, shown that primary axonal injury can be the underlying disease. The association of Campylobacter jejuni strains has led to confirmation that anti-ganglioside antibodies are pathogenic and that axonal GBS involves an antibody and complement-mediated disruption of nodes of Ranvier, neuromuscular junctions and other neuronal and glial membranes. Now, ongoing clinical trials of the complement inhibitor eculizumab are the first targeted immunotherapy in GBS

    Differences in lateral gene transfer in hypersaline versus thermal environments

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The role of lateral gene transfer (LGT) in the evolution of microorganisms is only beginning to be understood. While most LGT events occur between closely related individuals, inter-phylum and inter-domain LGT events are not uncommon. These distant transfer events offer potentially greater fitness advantages and it is for this reason that these "long distance" LGT events may have significantly impacted the evolution of microbes. One mechanism driving distant LGT events is microbial transformation. Theoretically, transformative events can occur between any two species provided that the DNA of one enters the habitat of the other. Two categories of microorganisms that are well-known for LGT are the thermophiles and halophiles.</p> <p>Results</p> <p>We identified potential inter-class LGT events into both a thermophilic class of Archaea (Thermoprotei) and a halophilic class of Archaea (Halobacteria). We then categorized these LGT genes as originating in thermophiles and halophiles respectively. While more than 68% of transfer events into Thermoprotei taxa originated in other thermophiles, less than 11% of transfer events into Halobacteria taxa originated in other halophiles.</p> <p>Conclusions</p> <p>Our results suggest that there is a fundamental difference between LGT in thermophiles and halophiles. We theorize that the difference lies in the different natures of the environments. While DNA degrades rapidly in thermal environments due to temperature-driven denaturization, hypersaline environments are adept at preserving DNA. Furthermore, most hypersaline environments, as topographical minima, are natural collectors of cellular debris. Thus halophiles would in theory be exposed to a greater diversity and quantity of extracellular DNA than thermophiles.</p

    ‘Emptying the cage, changing the birds’: state rescaling, path-dependency and the politics of economic restructuring in post-crisis Guangdong

    Get PDF
    This paper evaluates how economic restructuring in Guangdong is entwined with the politicization of state rescaling during and after the global financial crisis of 2008. It shows how a key industrial policy known as ‘double relocation’ generated tensions between the Guangdong government, then led by Party Secretary Wang Yang, and the senior echelon of the Communist Party of China in Beijing. The contestations and negotiations that ensued illustrate the dynamic entwinement between state rescaling and institutional path-dependency: the Wang administration launched this industrial policy in spite of potentially destabilizing effects on the prevailing national structure of capital accumulation. This foregrounds, in turn, the constitutive and constraining effects of established, national-level policies on local, territorially-specific restructuring policies

    The effects of pesticide mixtures on degradation of pendimethalin in soils

    Get PDF
    Most agronomic situations involve a sequence of herbicide, fungicide, and insecticide application. On the other hand, use of pesticidal combinations has become a standard practice in the production of many agricultural crops. One of the most important processes influencing the behavior of a pesticide in the environment is its degradation in soil. It is known that due to several pesticide applications in one vegetation season, the pesticide may be present in mixtures with other pesticides or xenobiotics in soil. This study examines the role which a mixture of chemicals plays in pesticide degradation. The influence of other pesticides on the rate of pendimethalin (PDM) degradation in soil was measured in controlled conditions. Mixtures of PDM with mancozeb or mancozeb and thiamethoxam significantly influenced the degradation of pendimethalin under controlled conditions. The second type of mixtures, with metribuzin or thiamethoxam, did not affect the behavior of pendimethalin in soil. Also, we determined the influence of water content on the rate of pendimethalin degradation alone in two soils and compared it to the rate in three pesticide mixtures. We compared two equations to evaluate the predictors of the rate of herbicide dissipation in soil: the first-order kinetic and the non-linear empirical models. We used the non-linear empirical model assuming that the degradation rate of a herbicide in soil is proportional to the difference of the observed concentration of herbicide in soil at time and concentration of herbicide in the last day of measurement
    corecore