49 research outputs found

    Hierarchical Fragmentation and Jet-like Outflows in IRDC G28.34+0.06, a Growing Massive Protostar Cluster

    Full text link
    We present Submillimeter Array (SMA) \lambda = 0.88mm observations of an infrared dark cloud (IRDC) G28.34+0.06. Located in the quiescent southern part of the G28.34 cloud, the region of interest is a massive (>103>10^3\,\msun) molecular clump P1 with a luminosity of ∼103\sim 10^3 \lsun, where our previous SMA observations at 1.3mm have revealed a string of five dust cores of 22-64 \msun\ along the 1 pc IR-dark filament. The cores are well aligned at a position angle of 48 degrees and regularly spaced at an average projected separation of 0.16 pc. The new high-resolution, high-sensitivity 0.88\,mm image further resolves the five cores into ten compact condensations of 1.4-10.6 \msun, with sizes a few thousands AU. The spatial structure at clump (∼1\sim 1 pc) and core (∼0.1\sim 0.1 pc) scales indicates a hierarchical fragmentation. While the clump fragmentation is consistent with a cylindrical collapse, the observed fragment masses are much larger than the expected thermal Jeans masses. All the cores are driving CO(3-2) outflows up to 38 km/s, majority of which are bipolar, jet-like outflows. The moderate luminosity of the P1 clump sets a limit on the mass of protostars of 3-7 \msun. Because of the large reservoir of dense molecular gas in the immediate medium and ongoing accretion as evident by the jet-like outflows, we speculate that P1 will grow and eventually form a massive star cluster. This study provides a first glimpse of massive, clustered star formation that currently undergoes through an intermediate-mass stage.Comment: 24 pages, 4 figures, 4 tables, accepted to Ap

    Impact of intra- versus inter-annual snow depth variation on water relations and photosynthesis for two Great Basin Desert shrubs

    Full text link
    Snowfall provides the majority of soil water in certain ecosystems of North America. We tested the hypothesis that snow depth variation affects soil water content, which in turn drives water potential (Ψ) and photosynthesis, over 10 years for two widespread shrubs of the western USA. Stem Ψ (Ψ stem) and photosynthetic gas exchange [stomatal conductance to water vapor (g s), and CO2 assimilation (A)] were measured in mid-June each year from 2004 to 2013 for Artemisia tridentata var. vaseyana (Asteraceae) and Purshia tridentata (Rosaceae). Snow fences were used to create increased or decreased snow depth plots. Snow depth on +snow plots was about twice that of ambient plots in most years, and 20 % lower on -snow plots, consistent with several down-scaled climate model projections. Maximal soil water content at 40- and 100-cm depths was correlated with February snow depth. For both species, multivariate ANOVA (MANOVA) showed that Ψ stem, g s, and A were significantly affected by intra-annual variation in snow depth. Within years, MANOVA showed that only A was significantly affected by spatial snow depth treatments for A. tridentata, and Ψ stem was significantly affected by snow depth for P. tridentata. Results show that stem water relations and photosynthetic gas exchange for these two cold desert shrub species in mid-June were more affected by inter-annual variation in snow depth by comparison to within-year spatial variation in snow depth. The results highlight the potential importance of changes in inter-annual variation in snowfall for future shrub photosynthesis in the western Great Basin Desert
    corecore