10 research outputs found

    Analysis of friction factor reduction in turbulent water flow using a superhydrophobic coating

    No full text
    This study provides experimental and theoretical evidence that the coating of the inner surface of copper pipes with superhydrophobic (SH) materials induces a Cassie state flow regime on the flow of water. This results in an increase in the fluid's dimensionless velocity distribution coefficient, a, which gives rise to an increase in the apparent Reynolds number, which may approach the "plug flow state". Experimental evidence from the SH coating of a classic unsteady-state flow system resulted in a significant decrease in the friction factor and associated energy loss. The friction factor decrease can be attributed to an increase in the apparent Reynolds number. The study demonstrates that the Cassie effects imposed by SH coating can be quantitatively shown to decrease the frictional resistance to flow in commercial pipes

    Carbohydrate secondary and tertiary structure using raman spectroscopy

    No full text
    Raman spectroscopy is a long-established analytical technique that has now proliferated into a variety of research tools that are able to identify and characterize almost any type of molecule under most conditions. As such, Raman spectroscopies are well suited to the study of carbohydrates, from simple monosaccharides to the largest glycosaminoglycans and from industrial bioreactors to in situ measurements on living cells. This review covers a range of examples of how Raman techniques are addressing the questions of glycobiologists working on diverse aspects of this fascinating but poorly understood class of biomolecules. Focus is placed on the application of Raman, surface-enhanced Raman, Raman optical activity, and related spectroscopies to characterizing carbohydrates of all types, with only a general introduction to the theory of the techniques themselves. Particular attention is also paid to the computational tools now regularly used by spectroscopists to analyze complex data. Although this review is aimed at the glycobiology community, the examples discussed also demonstrate to the expert spectroscopist how their techniques can impact on the exciting opportunities presented by working with carbohydrates

    Recent Development of Sandwich Assay Based on the Nanobiotechnologies for Proteins, Nucleic Acids, Small Molecules, and Ions

    No full text
    corecore