45 research outputs found

    Impact of familial risk factors on management and survival of early-onset breast cancer: a population-based study

    Get PDF
    This population-based study evaluates the impact of a strong family history of breast cancer on management and survival of women with early-onset disease. We identified all breast cancer patients ⩽50 years, recorded between 1990 and 2001 at the Geneva familial breast cancer registry. We compared patients at high familial risk and low familial risk in terms of tumour characteristics, method of detection, treatment, survival and breast cancer mortality risk. Compared to patients at low familial risk (n=575), those at high familial risk (n=58) received significantly more often systemic therapy, especially for node-negative or receptor-positive disease. Five-year disease-specific survival rates of patients at high vs low familial risk were 86 and 90%, respectively. After adjustment, there was no difference in breast cancer mortality in general. A strong family history nonsignificantly increased breast cancer mortality in patients ⩽40 years (adjusted hazard ratio (HR) 4.0, 95% CI 0.8–19.7) and in patients treated without chemotherapy (adjusted HR 2.7, 95% CI 0.6–12.5). A strong family history of breast cancer is associated with an increased use of systemic therapy in early-onset patients. Although a strong family history does not seem to affect survival in general, it may impair survival of very young patients and patients treated without adjuvant chemotherapy. Owing to the limited number of patients in this study, these results should be used only to generate hypotheses

    Clinical and biological progress over 50 years in Rett syndrome

    Get PDF
    In the 50 years since Andreas Rett first described the syndrome that came to bear his name, and is now known to be caused by a mutation in the methyl-CpG-binding protein 2 (MECP2) gene, a compelling blend of astute clinical observations and clinical and laboratory research has substantially enhanced our understanding of this rare disorder. Here, we document the contributions of the early pioneers in Rett syndrome (RTT) research, and describe the evolution of knowledge in terms of diagnostic criteria, clinical variation, and the interplay with other Rett-related disorders. We provide a synthesis of what is known about the neurobiology of MeCP2, considering the lessons learned from both cell and animal models, and how they might inform future clinical trials. With a focus on the core criteria, we examine the relationships between genotype and clinical severity. We review current knowledge about the many comorbidities that occur in RTT, and how genotype may modify their presentation. We also acknowledge the important drivers that are accelerating this research programme, including the roles of research infrastructure, international collaboration and advocacy groups. Finally, we highlight the major milestones since 1966, and what they mean for the day-to-day lives of individuals with RTT and their families

    From polyester grafting onto POSS nanocage by ring-opening polymerization to high performance polyester/POSS nanocomposites

    Full text link
    Polyester-grafted polyhedral oligomeric silsesquioxane (POSS) nanohybrids selectively produced by ring-opening polymerization of epsilon-caprolactone and L,L-lactide (A.-L. Goffin, E. Duquesne, S. Moins, M. Alexandre, Ph. Dubois, Eur. Polym. Journal, 2007, 43, 4103) were studied as ‘‘masterbatches’’ by melt-blending within their corresponding commercial polymeric matrices, i.e., poly(epsilon-caprolactone) (PCL) and poly(L,L-lactide) (PLA). For the sake of comparison, neat POSS nanoparticles were also dispersed in PCL and PLA. The objective was to prepare aliphatic polyester-based nanocomposites with enhanced crystallization behavior, and therefore, enhanced thermo-mechanical properties. Wide-angle X-ray scattering and transmission electron microscopy attested for the dispersion of individualized POSS nanoparticles in the resulting nanocomposite materials only when the polyester-grafted POSS nanohybrid was used as a masterbatch. The large impact of such finely dispersed (grafted) nanoparticles on the crystallization behavior for the corresponding polyester matrices was noticed, as evidenced by differential scanning calorimetry analysis. Indeed, well-dispersed POSS nanoparticles acted as efficient nucleating sites, significantly increasing the crystallinity degree of both PCL and PLA matrices. As a result, a positive impact on thermo-mechanical properties was highlighted by dynamic mechanical thermal analysis
    corecore