9 research outputs found

    Decreased 3D observer variation with matched CT-MRI, for target delineation in Nasopharynx cancer

    Get PDF
    Contains fulltext : 88137.pdf (publisher's version ) (Open Access)PURPOSE: To determine the variation in target delineation of nasopharyngeal carcinoma and the impact of measures to minimize this variation. MATERIALS AND METHODS: For ten nasopharyngeal cancer patients, ten observers each delineated the Clinical Target Volume (CTV) and the CTV elective. After 3D analysis of the delineated volumes, a second delineation was performed. This implied improved delineation instructions, a combined delineation on CT and co-registered MRI, forced use of sagittal reconstructions, and an on-line anatomical atlas. RESULTS: Both for the CTV and the CTV elective delineations, the 3D SD decreased from Phase 1 to Phase 2, from 4.4 to 3.3 mm for the CTV and from 5.9 to 4.9 mm for the elective. There was an increase agreement, where the observers intended to delineate the same structure, from 36 to 64 surface % (p = 0.003) for the CTV and from 17 to 59% (p = 0.004) for the elective. The largest variations were at the caudal border of the delineations but these were smaller when an observer utilized the sagittal window. Hence, the use of sagittal side windows was enforced in the second phase and resulted in a decreased standard deviation for this area from 7.7 to 3.3 mm (p = 0.001) for the CTV and 7.9 to 5.6 mm (p = 0.03) for the CTV elective. DISCUSSION: Attempts to decrease the variation need to be tailored to the specific causes of the variation. Use of delineation instructions multimodality imaging, the use of sagittal windows and an on-line atlas result in a higher agreement on the intended target

    Intrafraction motion of the prostate during an IMRT session: a fiducial-based 3D measurement with Cone-beam CT

    Get PDF
    Background: Image-guidance systems allow accurate interfractional repositioning of IMRT treatments, however, these may require up to 15 minutes. Therefore intrafraction motion might have an impact on treatment precision. 3D geometric data regarding intrafraction prostate motion are rare; we therefore assessed its magnitude with pre- and post-treatment fiducial-based imaging with cone-beam-CT (CBCT). Methods: 39 IMRT fractions in 5 prostate cancer patients after (125)I-seed implantation were evaluated. Patient position was corrected based on the (125)I-seeds after pre-treatment CBCT. Immediately after treatment delivery, a second CBCT was performed. Differences in bone- and fiducial position were measured by seed-based grey-value matching. Results: Fraction time was 13.6 +/- 1.6 minutes. Median overall displacement vector length of (125)Iseeds was 3 mm (M = 3 mm, Sigma = 0.9 mm, sigma = 1.7 mm; M: group systematic error, Sigma: SD of systematic error, sigma: SD of random error). Median displacement vector of bony structures was 1.84 mm (M = 2.9 mm, Sigma = 1 mm, sigma = 3.2 mm). Median displacement vector length of the prostate relative to bony structures was 1.9 mm (M = 3 mm, Sigma = 1.3 mm, sigma = 2.6 mm). Conclusion: a) Overall displacement vector length during an IMRT session is < 3 mm. b) Positioning devices reducing intrafraction bony displacements can further reduce overall intrafraction motion. c) Intrafraction prostate motion relative to bony structures is < 2 mm and may be further reduced by institutional protocols and reduction of IMRT duration

    Obtaining Adequate Surgical Margins in Breast-Conserving Therapy for Patients with Early-Stage Breast Cancer: Current Modalities and Future Directions

    Get PDF
    Inadequate surgical margins represent a high risk for adverse clinical outcome in breast-conserving therapy (BCT) for early-stage breast cancer. The majority of studies report positive resection margins in 20% to 40% of the patients who underwent BCT. This may result in an increased local recurrence (LR) rate or additional surgery and, consequently, adverse affects on cosmesis, psychological distress, and health costs. In the literature, various risk factors are reported to be associated with positive margin status after lumpectomy, which may allow the surgeon to distinguish those patients with a higher a priori risk for re-excision. However, most risk factors are related to tumor biology and patient characteristics, which cannot be modified as such. Therefore, efforts to reduce the number of positive margins should focus on optimizing the surgical procedure itself, because the surgeon lacks real-time intraoperative information on the presence of positive resection margins during breast-conserving surgery. This review presents the status of pre- and intraoperative modalities currently used in BCT. Furthermore, innovative intraoperative approaches, such as positron emission tomography, radioguided occult lesion localization, and near-infrared fluorescence optical imaging, are addressed, which have to prove their potential value in improving surgical outcome and reducing the need for re-excision in BCT
    corecore