310 research outputs found

    Bacterial microevolution and the Pangenome

    Get PDF
    The comparison of multiple genome sequences sampled from a bacterial population reveals considerable diversity in both the core and the accessory parts of the pangenome. This diversity can be analysed in terms of microevolutionary events that took place since the genomes shared a common ancestor, especially deletion, duplication, and recombination. We review the basic modelling ingredients used implicitly or explicitly when performing such a pangenome analysis. In particular, we describe a basic neutral phylogenetic framework of bacterial pangenome microevolution, which is not incompatible with evaluating the role of natural selection. We survey the different ways in which pangenome data is summarised in order to be included in microevolutionary models, as well as the main methodological approaches that have been proposed to reconstruct pangenome microevolutionary history

    Coupled Systems of Differential-Algebraic and Kinetic Equations with Application to the Mathematical Modelling of Muscle Tissue

    Full text link
    We consider a coupled system composed of a linear differential-algebraic equation (DAE) and a linear large-scale system of ordinary differential equations where the latter stands for the dynamics of numerous identical particles. Replacing the discrete particles by a kinetic equation for a particle density, we obtain in the mean-field limit the new class of partially kinetic systems. We investigate the influence of constraints on the kinetic theory of those systems and present necessary adjustments. We adapt the mean-field limit to the DAE model and show that index reduction and the mean-field limit commute. As a main result, we prove Dobrushin's stability estimate for linear systems. The estimate implies convergence of the mean-field limit and provides a rigorous link between the particle dynamics and their kinetic description. Our research is inspired by mathematical models for muscle tissue where the macroscopic behaviour is governed by the equations of continuum mechanics, often discretised by the finite element method, and the microscopic muscle contraction process is described by Huxley's sliding filament theory. The latter represents a kinetic equation that characterises the state of the actin-myosin bindings in the muscle filaments. Linear partially kinetic systems are a simplified version of such models, with focus on the constraints.Comment: 32 pages, 18 figure

    Comparative genomic analysis of toxin-negative strains of Clostridium difficile from humans and animals with symptoms of gastrointestinal disease

    Get PDF
    Background: Clostridium difficile infections (CDI) are a significant health problem to humans and food animals. Clostridial toxins ToxA and ToxB encoded by genes tcdA and tcdB are located on a pathogenicity locus known as the PaLoc and are the major virulence factors of C. difficile. While toxin-negative strains of C. difficile are often isolated from faeces of animals and patients suffering from CDI, they are not considered to play a role in disease. Toxin-negative strains of C. difficile have been used successfully to treat recurring CDI but their propensity to acquire the PaLoc via lateral gene transfer and express clinically relevant levels of toxins has reinforced the need to characterise them genetically. In addition, further studies that examine the pathogenic potential of toxin-negative strains of C. difficile and the frequency by which toxin-negative strains may acquire the PaLoc are needed. Results: We undertook a comparative genomic analysis of five Australian toxin-negative isolates of C. difficile that lack tcdA, tcdB and both binary toxin genes cdtA and cdtB that were recovered from humans and farm animals with symptoms of gastrointestinal disease. Our analyses show that the five C. difficile isolates cluster closely with virulent toxigenic strains of C. difficile belonging to the same sequence type (ST) and have virulence gene profiles akin to those in toxigenic strains. Furthermore, phage acquisition appears to have played a key role in the evolution of C. difficile. Conclusions: Our results are consistent with the C. difficile global population structure comprising six clades each containing both toxin-positive and toxin-negative strains. Our data also suggests that toxin-negative strains of C. difficile encode a repertoire of putative virulence factors that are similar to those found in toxigenic strains of C. difficile, raising the possibility that acquisition of PaLoc by toxin-negative strains poses a threat to human health. Studies in appropriate animal models are needed to examine the pathogenic potential of toxin-negative strains of C. difficile and to determine the frequency by which toxin-negative strains may acquire the PaLoc

    Mapping Proprioception across a 2D Horizontal Workspace

    Get PDF
    Relatively few studies have been reported that document how proprioception varies across the workspace of the human arm. Here we examined proprioceptive function across a horizontal planar workspace, using a new method that avoids active movement and interactions with other sensory modalities. We systematically mapped both proprioceptive acuity (sensitivity to hand position change) and bias (perceived location of the hand), across a horizontal-plane 2D workspace. Proprioception of both the left and right arms was tested at nine workspace locations and in 2 orthogonal directions (left-right and forwards-backwards). Subjects made repeated judgments about the position of their hand with respect to a remembered proprioceptive reference position, while grasping the handle of a robotic linkage that passively moved their hand to each judgement location. To rule out the possibility that the memory component of the proprioceptive testing procedure may have influenced our results, we repeated the procedure in a second experiment using a persistent visual reference position. Both methods resulted in qualitatively similar findings. Proprioception is not uniform across the workspace. Acuity was greater for limb configurations in which the hand was closer to the body, and was greater in a forward-backward direction than in a left-right direction. A robust difference in proprioceptive bias was observed across both experiments. At all workspace locations, the left hand was perceived to be to the left of its actual position, and the right hand was perceived to be to the right of its actual position. Finally, bias was smaller for hand positions closer to the body. The results of this study provide a systematic map of proprioceptive acuity and bias across the workspace of the limb that may be used to augment computational models of sensory-motor control, and to inform clinical assessment of sensory function in patients with sensory-motor deficits

    Dynamics of Genome Rearrangement in Bacterial Populations

    Get PDF
    Genome structure variation has profound impacts on phenotype in organisms ranging from microbes to humans, yet little is known about how natural selection acts on genome arrangement. Pathogenic bacteria such as Yersinia pestis, which causes bubonic and pneumonic plague, often exhibit a high degree of genomic rearrangement. The recent availability of several Yersinia genomes offers an unprecedented opportunity to study the evolution of genome structure and arrangement. We introduce a set of statistical methods to study patterns of rearrangement in circular chromosomes and apply them to the Yersinia. We constructed a multiple alignment of eight Yersinia genomes using Mauve software to identify 78 conserved segments that are internally free from genome rearrangement. Based on the alignment, we applied Bayesian statistical methods to infer the phylogenetic inversion history of Yersinia. The sampling of genome arrangement reconstructions contains seven parsimonious tree topologies, each having different histories of 79 inversions. Topologies with a greater number of inversions also exist, but were sampled less frequently. The inversion phylogenies agree with results suggested by SNP patterns. We then analyzed reconstructed inversion histories to identify patterns of rearrangement. We confirm an over-representation of “symmetric inversions”—inversions with endpoints that are equally distant from the origin of chromosomal replication. Ancestral genome arrangements demonstrate moderate preference for replichore balance in Yersinia. We found that all inversions are shorter than expected under a neutral model, whereas inversions acting within a single replichore are much shorter than expected. We also found evidence for a canonical configuration of the origin and terminus of replication. Finally, breakpoint reuse analysis reveals that inversions with endpoints proximal to the origin of DNA replication are nearly three times more frequent. Our findings represent the first characterization of genome arrangement evolution in a bacterial population evolving outside laboratory conditions. Insight into the process of genomic rearrangement may further the understanding of pathogen population dynamics and selection on the architecture of circular bacterial chromosomes

    ERK1/2 signalling protects against apoptosis following endoplasmic reticulum stress but cannot provide long-term protection against BAX/BAK-independent cell death

    Get PDF
    Disruption of protein folding in the endoplasmic reticulum (ER) causes ER stress. Activation of the unfolded protein response (UPR) acts to restore protein homeostasis or, if ER stress is severe or persistent, drive apoptosis, which is thought to proceed through the cell intrinsic, mitochondrial pathway. Indeed, cells that lack the key executioner proteins BAX and BAK are protected from ER stress-induced apoptosis. Here we show that chronic ER stress causes the progressive inhibition of the extracellular signal-regulated kinase (ERK1/2) signalling pathway. This is causally related to ER stress since reactivation of ERK1/2 can protect cells from ER stress-induced apoptosis whilst ERK1/2 pathway inhibition sensitises cells to ER stress. Furthermore, cancer cell lines harbouring constitutively active BRAFV600E are addicted to ERK1/2 signalling for protection against ER stress-induced cell death. ERK1/2 signalling normally represses the pro-death proteins BIM, BMF and PUMA and it has been proposed that ER stress induces BIM-dependent cell death. We found no evidence that ER stress increased the expression of these proteins; furthermore, BIM was not required for ER stress-induced death. Rather, ER stress caused the PERK-dependent inhibition of cap-dependent mRNA translation and the progressive loss of pro-survival proteins including BCL2, BCLXL and MCL1. Despite these observations, neither ERK1/2 activation nor loss of BAX/BAK could confer long-term clonogenic survival to cells exposed to ER stress. Thus, ER stress induces cell death by at least two biochemically and genetically distinct pathways: a classical BAX/BAK-dependent apoptotic response that can be inhibited by ERK1/2 signalling and an alternative ERK1/2- and BAX/BAK-independent cell death pathway

    Interspecific Hybridization and Mitochondrial Introgression in Invasive Carcinus Shore Crabs

    Get PDF
    Interspecific hybridization plays an important role in facilitating adaptive evolutionary change. More specifically, recent studies have demonstrated that hybridization may dramatically influence the establishment, spread, and impact of invasive populations. In Japan, previous genetic evidence for the presence of two non-native congeners, the European green crab Carcinus maenas and the Mediterranean green crab C. aestuarii, has raised questions regarding the possibility of hybridization between these sister species. Here I present analysis based on both nuclear microsatellites and the mitochondrial cytochrome C oxidase subunit I (COI) gene which unambiguously argues for a hybrid origin of Japanese Carcinus. Despite the presence of mitochondrial lineages derived from both C. maenas and C. aestuarii, the Japanese population is panmictic at nuclear loci and has achieved cytonuclear equilibrium throughout the sampled range in Japan. Furthermore, analysis of admixture at nuclear loci indicates dramatic introgression of the C. maenas mitochondrial genome into a predominantly C. aestuarii nuclear background. These patterns, along with inferences drawn from the observational record, argue for a hybridization event pre-dating the arrival of Carcinus in Japan. The clarification of both invasion history and evolutionary history afforded by genetic analysis provides information that may be critically important to future studies aimed at assessing risks posed by invasive Carcinus populations to Japan and the surrounding region
    corecore