8 research outputs found

    Moderate hypothermia attenuates α<sub>1</sub>-adrenoceptor-mediated contraction in human varicose spermatic vein: The role of nitric oxide(Short communication)

    Get PDF
    The effects of moderate hypothermia (28 °C) on the response of human varicose spermatic vein to α1-adrenoceptor agonist phenylephrine and the role of endothelial nitric oxide (NO) in these effects were studied. Concentration–response curves for phenylephrine (10−9 to 3 × 10−4 M) were recorded in rings with and without endothelium at 37 and 28 °C. To further analyze the role of NO, in the response to phenylephrine during hypothermia, the effects of this agonist in the presence of NG-nitro-L-arginine methyl ester (10−4 M) were also determined. Under every condition tested, phenylephrine produced a marked, concentration-dependent contraction. Sensitivity of intact veins to the agonist was consistently lower at 28 °C than at 37 °C. There was no significant difference in phenylephrine response at 28 and 37 °C in vessels without endothelium but at 28 °C veins without endothelium showed a higher sensitivity than intact veins to phenylephrine. The sensitivity of veins with and without endothelium to nitroprusside (10−9 to 3 × 10−3 M) was significantly decreased during hypothermia, and endothelium removal did not affect the relaxation to this nitrovasodilator. These results suggest that moderate hypothermia decreases the sensitivity of human varicose spermatic vein to phenylephrine probably by increasing the availability of endothelial NO

    Role of potassium and calcium channels in sevoflurane-mediated vasodilation in the foeto-placental circulation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sevoflurane has been demonstrated to vasodilate the foeto-placental vasculature. We aimed to determine the contribution of modulation of potassium and calcium channel function to the vasodilatory effect of sevoflurane in isolated human chorionic plate arterial rings.</p> <p>Methods</p> <p>Quadruplicate <it>ex vivo </it>human chorionic plate arterial rings were used in all studies. <b><it>Series 1 and 2 </it></b>examined the role of the K<sup>+ </sup>channel in sevoflurane-mediated vasodilation. Separate experiments examined whether tetraethylammonium, which blocks large conductance calcium activated K<sup>+ </sup>(K<sub>Ca++</sub>) channels (<b><it>Series 1A+B</it></b>) or glibenclamide, which blocks the ATP sensitive K<sup>+ </sup>(K<sub>ATP</sub>) channel (<b><it>Series 2</it></b>), modulated sevoflurane-mediated vasodilation. <b><it>Series 3 – 5 </it></b>examined the role of the Ca<sup>++ </sup>channel in sevoflurane induced vasodilation. Separate experiments examined whether verapamil, which blocks the sarcolemmal voltage-operated Ca<sup>++ </sup>channel (<b><it>Series 3</it></b>), SK&F 96365 an inhibitor of sarcolemmal voltage-independent Ca<sup>++ </sup>channels (<b><it>Series 4A+B</it></b>), or ryanodine an inhibitor of the sarcoplasmic reticulum Ca<sup>++ </sup>channel (<b><it>Series 5A+B</it></b>), modulated sevoflurane-mediated vasodilation.</p> <p>Results</p> <p>Sevoflurane produced dose dependent vasodilatation of chorionic plate arterial rings in all studies. Prior blockade of the K<sub>Ca++ </sub>and K<sub>ATP </sub>channels augmented the vasodilator effects of sevoflurane. Furthermore, exposure of rings to sevoflurane in advance of TEA occluded the effects of TEA. Taken together, these findings suggest that sevoflurane blocks K<sup>+ </sup>channels. Blockade of the voltage-operated Ca<sup>++</sup>channels inhibited the vasodilator effects of sevoflurane. In contrast, blockade of the voltage-independent and sarcoplasmic reticulum Ca<sup>++</sup>channels did not alter sevoflurane vasodilation.</p> <p>Conclusion</p> <p>Sevoflurane appears to block chorionic arterial K<sub>Ca++ </sub>and K<sub>ATP </sub>channels. Sevoflurane also blocks voltage-operated calcium channels, and exerts a net vasodilatory effect in the <it>in vitro </it>foeto-placental circulation.</p
    corecore