18 research outputs found

    Mechanisms of the effects of nicorandil in the isolated rat heart during ischemia and reperfusion: a 31P-nuclear magnetic resonance study.

    No full text
    Nicorandil (SG75) is a potent K+-channel activator with an additional nitro moiety. In the present study we investigated the potential mechanisms (K+-channel activation and nitric oxide [NO] release) for the effects of nicorandil on isolated perfused rat hearts during total global ischemia using 31P-nuclear magnetic resonance. After a 10-min control perfusion, hearts were subjected to treatment with nicorandil-containing (100, 300, or 1000 microM) buffer for 10 min, 15 min of total global ischemia, and 30 min of reperfusion. At high dose (10(-3) M), nicorandil reduced ATP depletion during ischemia by 26% compared with untreated hearts. Blockade of K+ channels by glibenclamide prevented this protective effect. At all doses (10(-4) to 10(-3) M), nicorandil reduced the accumulation of protons during ischemia compared with untreated hearts (pH 6.22 +/- 0.03 vs. 6.02 +/- 0.05 in untreated hearts at the end of ischemia). This effect was preserved after blockade of K+ channels by glibenclamide. Hearts treated with nitroglycerine before ischemia also showed reduced proton accumulation. Therefore, NO release accompanied by increased coronary flow before ischemia, which is caused by the nitro moiety of nicorandil and nitroglycerine treatment, results in reduced proton accumulation. During reperfusion, a pro-arrhythmic effect was observed in hearts treated with the nonpharmacologically high dose of nicorandil (1000 microM). Thus, we conclude that the effects of nicorandil are caused by the simultaneous action of both mechanisms K+-channel activation and NO release. The activation of K+ channels prevents deterioration of ATP during ischemia, whereas NO release and increased coronary flow reduce the accumulation of protons--and thus the decrease in pH--during ischemia

    Functional and energetic consequences of chronic myocardial creatine depletion by beta-guanidinopropionate in perfused hearts and in intact rats.

    No full text
    Oral feeding with the creatine analogue beta-guanidinopropionate (beta-GP) reduces myocardial phosphocreatine and creatine concentrations by about 80%in vitro, this is accompanied by reduced contractile performance. We hypothesized, thus, that beta-GP feeding leads to hemodynamic changes in vivo characteristic of heart failure. beta-GP was fed to Wistar rats for up to 8 weeks. In isolated hearts, function was measured isovolumically, myocardial energetics were followed with (31)P-NMR spectroscopy. In vivo hemodynamics were measured with Millar-Tip-catheters and an electromagnetic flow probe. Beta-GP feeding did not alter heart weight. In vitro, diastolic pressure-volume curves indicated structural left ventricular dilatation, and a 36% reduction of left ventricular developed pressure was found; phosphocreatine was reduced by approximately 80%, ATP unchanged and creatine kinase reaction velocity ((31)P-MR saturation transfer) decreased by approximately 90%. The total creatine pool (high-pressure liquid chromatography) was reduced by up to approximately 70%. In contrast to in vitro findings, in vivo cardiac hemodynamics (including left ventricular developed pressure, d P/d t(max), cardiac output and peripheral vascular resistance) at rest and during acute volume loading showed no alterations after beta-GP feeding. The only functional impairment observed in vivo was a 14% reduction of maximum left ventricular developed pressure during brief aortic occlusion. In the intact rat, cardiac and/or humoral compensatory mechanisms are sufficient to maintain normal hemodynamics in spite of a 90% reduction of creatine kinase reaction velocity. However, chronic beta-GP feeding leads to structural left ventricular dilatation

    Role of pyridoxal 5’-phosphate in the structural stabilization of O-acetylserine sulfhydrylase

    No full text
    Proteins belonging to the superfamily of pyridoxal 5′-phosphate-dependent enzymes are currently classified into three functional groups and five distinct structural fold types. The variation within this enzyme group creates an ideal system to investigate the relationships among amino acid sequences, folding pathways, and enzymatic functions. The number of known three-dimensional structures of pyridoxal 5′-phosphate-dependent enzymes is rapidly increasing, but only for relatively few have the folding mechanisms been characterized in detail. The dimeric O-acetylserine sulfhydrylase fromSalmonella typhimurium belongs to the β-family and fold type II group. Here we report the guanidine hydrochloride-induced unfolding of the apo- and holoprotein, investigated using a variety of spectroscopic techniques. Data from absorption, fluorescence, circular dichroism, 31P nuclear magnetic resonance, time-resolved fluorescence anisotropy, and photon correlation spectroscopy indicate that the O-acetylserine sulfhydrylase undergoes extensive disruption of native secondary and tertiary structure before monomerization. Also, we have observed that the holo-O-acetylserine sulfhydrylase exhibits a greater conformational stability than the apoenzyme form. The data are discussed in light of the fact that the role of the coenzyme in structural stabilization varies among the pyridoxal 5′-phosphate-dependent enzymes and does not seem to be linked to the particular enzyme fold type

    An essential developmental function for murine phosphoglycolate phosphatase in safeguarding cell proliferation

    No full text
    Mammalian phosphoglycolate phosphatase (PGP) is thought to target phosphoglycolate, a 2-deoxyribose fragment derived from the repair of oxidative DNA lesions. However, the physiological role of this activity and the biological function of the DNA damage product phosphoglycolate is unknown. We now show that knockin replacement of murine Pgp with its phosphatase-inactive Pgp(D34N) mutant is embryonically lethal due to intrauterine growth arrest and developmental delay in midgestation. PGP inactivation attenuated triosephosphate isomerase activity, increased triglyceride levels at the expense of the cellular phosphatidylcholine content, and inhibited cell proliferation. These effects were prevented under hypoxic conditions or by blocking phosphoglycolate release from damaged DNA. Thus, PGP is essential to sustain cell proliferation in the presence of oxygen. Collectively, our findings reveal a previously unknown mechanism coupling a DNA damage repair product to the control of intermediary metabolism and cell proliferation
    corecore