75 research outputs found

    Gravitational waves from single neutron stars: an advanced detector era survey

    Full text link
    With the doors beginning to swing open on the new gravitational wave astronomy, this review provides an up-to-date survey of the most important physical mechanisms that could lead to emission of potentially detectable gravitational radiation from isolated and accreting neutron stars. In particular we discuss the gravitational wave-driven instability and asteroseismology formalism of the f- and r-modes, the different ways that a neutron star could form and sustain a non-axisymmetric quadrupolar "mountain" deformation, the excitation of oscillations during magnetar flares and the possible gravitational wave signature of pulsar glitches. We focus on progress made in the recent years in each topic, make a fresh assessment of the gravitational wave detectability of each mechanism and, finally, highlight key problems and desiderata for future work.Comment: 39 pages, 12 figures, 2 tables. Chapter of the book "Physics and Astrophysics of Neutron Stars", NewCompStar COST Action 1304. Minor corrections to match published versio

    Extrasolar enigmas: from disintegrating exoplanets to exoasteroids

    Full text link
    Thousands of transiting exoplanets have been discovered to date, thanks in great part to the {\em Kepler} space mission. As in all populations, and certainly in the case of exoplanets, one finds unique objects with distinct characteristics. Here we will describe the properties and behaviour of a small group of `disintegrating' exoplanets discovered over the last few years (KIC 12557548b, K2-22b, and others). They evaporate, lose mass unraveling their naked cores, produce spectacular dusty comet-like tails, and feature highly variable asymmetric transits. Apart from these exoplanets, there is observational evidence for even smaller `exo-'objects orbiting other stars: exoasteroids and exocomets. Most probably, such objects are also behind the mystery of Boyajian's star. Ongoing and upcoming space missions such as {\em TESS} and PLATO will hopefully discover more objects of this kind, and a new era of the exploration of small extrasolar systems bodies will be upon us.Comment: Accepted for publication in the book "Reviews in Frontiers of Modern Astrophysics: From Space Debris to Cosmology" (eds Kabath, Jones and Skarka; publisher Springer Nature) funded by the European Union Erasmus+ Strategic Partnership grant "Per Aspera Ad Astra Simul" 2017-1-CZ01-KA203-03556

    Planetary Rings

    Full text link
    Planetary rings are the only nearby astrophysical disks, and the only disks that have been investigated by spacecraft. Although there are significant differences between rings and other disks, chiefly the large planet/ring mass ratio that greatly enhances the flatness of rings (aspect ratios as small as 1e-7), understanding of disks in general can be enhanced by understanding the dynamical processes observed at close-range and in real-time in planetary rings. We review the known ring systems of the four giant planets, as well as the prospects for ring systems yet to be discovered. We then review planetary rings by type. The main rings of Saturn comprise our system's only dense broad disk and host many phenomena of general application to disks including spiral waves, gap formation, self-gravity wakes, viscous overstability and normal modes, impact clouds, and orbital evolution of embedded moons. Dense narrow rings are the primary natural laboratory for understanding shepherding and self-stability. Narrow dusty rings, likely generated by embedded source bodies, are surprisingly found to sport azimuthally-confined arcs. Finally, every known ring system includes a substantial component of diffuse dusty rings. Planetary rings have shown themselves to be useful as detectors of planetary processes around them, including the planetary magnetic field and interplanetary impactors as well as the gravity of nearby perturbing moons. Experimental rings science has made great progress in recent decades, especially numerical simulations of self-gravity wakes and other processes but also laboratory investigations of coefficient of restitution and spectroscopic ground truth. The age of self-sustained ring systems is a matter of debate; formation scenarios are most plausible in the context of the early solar system, while signs of youthfulness indicate at least that rings have never been static phenomena.Comment: 82 pages, 34 figures. Final revision of general review to be published in "Planets, Stars and Stellar Systems", P. Kalas and L. French (eds.), Springer (http://refworks.springer.com/sss

    The Role of Traditional Knowledge to Frame Understanding of Migration as Adaptation to the "Slow Disaster" of Sea Level Rise in the South Pacific

    No full text
    Political rhetoric from small islands in the South Pacific is loudly proclaiming a disaster in the making through sea-level rise. Appealing as the rhetoric may be, it masks very complex processes, such as poor governance leading to unsustainable land use and environmental degradation. It thus interferes with more long term planning strategies which aim to avoid the creation of disasters from sea-level rise. There are nevertheless very good reasons for this rhetoric, including a lack of understanding of underlying complex processes and a lack of proactive governance. More deeply, this lack of understanding can be linked to underlining presumptions driving modernization and globalization, including views about risk, identity, and land tenure. This chapter attempts to frame and unpack the complex issue of climate change, disasters, and “environmental migration” to create greater awareness in order to address these multiple problems and enable strategic planning. Based on empirical work from communities at-risk from slow-onset sea-level rise hazards in Kiribati and Tuvalu, a synthesis of scientific and traditional perspectives is combined to develop a conceptual model, which indicates how cultural traditions can contribute to enabling migrants to successfully adapt to their new social-ecological environment. A case study of successful adaptations by migrant communities in Fiji is used to illustrate the principles

    Hot super-Earths stripped by their host stars.

    Get PDF
    Simulations predict that hot super-Earth sized exoplanets can have their envelopes stripped by photoevaporation, which would present itself as a lack of these exoplanets. However, this absence in the exoplanet population has escaped a firm detection. Here we demonstrate, using asteroseismology on a sample of exoplanets and exoplanet candidates observed during the Kepler mission that, while there is an abundance of super-Earth sized exoplanets with low incident fluxes, none are found with high incident fluxes. We do not find any exoplanets with radii between 2.2 and 3.8 Earth radii with incident flux above 650 times the incident flux on Earth. This gap in the population of exoplanets is explained by evaporation of volatile elements and thus supports the predictions. The confirmation of a hot-super-Earth desert caused by evaporation will add an important constraint on simulations of planetary systems, since they must be able to reproduce the dearth of close-in super-Earths.peerReviewe
    corecore