32 research outputs found

    Synaptic Depression Via Mglur1 Positive Allosteric Modulation Suppresses Cue-Induced Cocaine Craving

    Get PDF
    Cue-induced cocaine craving is a major cause of relapse in abstinent addicts. In rats, cue-induced craving progressively intensifies (incubates) during withdrawal from extended-access cocaine self-administration. After ~1 month of withdrawal, incubated craving is mediated by Ca(2+)-permeable AMPA receptors (CP-AMPARs) that accumulate in the nucleus accumbens (NAc). We found that decreased mGluR1 surface expression in the NAc preceded and enabled CP-AMPAR accumulation. Thus, restoring mGluR1 transmission by administering repeated injections of an mGluR1 positive allosteric modulator (PAM) prevented CP-AMPAR accumulation and incubation, whereas blocking mGluR1 transmission at even earlier withdrawal times accelerated CP-AMPAR accumulation. In studies conducted after prolonged withdrawal, when CP-AMPAR levels and cue-induced craving are high, we found that systemic administration of an mGluR1 PAM attenuated the expression of incubated craving by reducing CP-AMPAR transmission in the NAc to control levels. These results suggest a strategy in which recovering addicts could use a systemically active compound to protect against cue-induced relapse

    Frequency of alcohol consumption in humans; the role of metabotropic glutamate receptors and downstream signaling pathways

    Get PDF
    Rodent models implicate metabotropic glutamate receptors (mGluRs) and downstream signaling pathways in addictive behaviors through metaplasticity. One way mGluRs can influence synaptic plasticity is by regulating the local translation of AMPA receptor trafficking proteins via eukaryotic elongation factor 2 (eEF2). However, genetic variation in this pathway has not been examined with human alcohol use phenotypes. Among a sample of adults living in Detroit, Michigan (Detroit Neighborhood Health Study; n=788; 83% African American), 206 genetic variants across the mGluR–eEF2–AMPAR pathway (including GRM1, GRM5, HOMER1, HOMER2, EEF2K, MTOR, EIF4E, EEF2, CAMK2A, ARC, GRIA1 and GRIA4) were found to predict number of drinking days per month (corrected P-value <0.01) when considered as a set (set-based linear regression conducted in PLINK). In addition, a CpG site located in the 3′-untranslated region on the north shore of EEF2 (cg12255298) was hypermethylated in those who drank more frequently (P<0.05). Importantly, the association between several genetic variants within the mGluR–eEF2–AMPAR pathway and alcohol use behavior (i.e., consumption and alcohol-related problems) replicated in the Grady Trauma Project (GTP), an independent sample of adults living in Atlanta, Georgia (n=1034; 95% African American), including individual variants in GRM1, GRM5, EEF2, MTOR, GRIA1, GRIA4 and HOMER2 (P<0.05). Gene-based analyses conducted in the GTP indicated that GRM1 (empirical P<0.05) and EEF2 (empirical P<0.01) withstood multiple test corrections and predicted increased alcohol consumption and related problems. In conclusion, insights from rodent studies enabled the identification of novel human alcohol candidate genes within the mGluR–eEF2–AMPAR pathway

    Homer1/mGluR5 activity moderates vulnerability to chronic social stress

    No full text
    Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents
    corecore