17 research outputs found

    Constitutive expression of bergaptol O-methyltransferase in Glehnia littoralis cell cultures.

    Get PDF
    We investigated whether exogenously supplied precursors of bergapten, namely umbelliferone, psoralen and bergaptol, could be utilized to produce bergapten without elicitation in Glehnia littoralis cell suspension cultures. The levels of added psoralen and bergaptol in the medium soon decreased, and this was followed by the detection of bergapten in both culture fluid and cells. Umbelliferone was also incorporated but in this case no bergapten was produced; instead, skimmin, umbelliferone monoglucoside, was detected. To determine whether conversion of psoralen to bergapten was due to enzyme induction by precursor feeding, the transcript accumulations and enzyme activities of bergaptol O-methyltransferase (BMT, EC 2.1.1.69), which catalyzes the last step of bergapten synthesis, and of phenylalanine ammonia-lyase (PAL, EC 4.3.1.5), which catalyzes the initial step of the phenylpropanoid biosynthetic pathway and is known as a marker enzyme of elicitation, were examined. The results showed that both the expression and the activity of BMT were always detected in all cells, including control cells. Since PAL was slightly induced in the cells supplied with/without precursors, phenylethyl alcohol (PEA, a competitive inhibitor of PAL) was applied to suspension cells prior to the addition of psoralen. PAL activity was effectively inhibited by PEA at 1-5 mM concentrations. Under these conditions, PEA did not affect bergapten production by cell cultures fed with psoralen at all. These results demonstrate that BMT is constitutively expressed in G. littoralis cell cultures

    Network analysis of gut microbiota literature: an overview of the research landscape in non-human animal studies.

    Get PDF
    A wealth of human studies have demonstrated the importance of gut microbiota to health. Research on non-human animal gut microbiota is now increasing, but what insight does it provide? We reviewed 650 publications from this burgeoning field (2009-2016) and determined that animals driving this research were predominantly 'domestic' (48.2%), followed by 'model' (37.5%), with least studies on 'wild' (14.3%) animals. Domestic studies largely experimentally perturbed microbiota (81.8%) and studied mammals (47.9%), often to improve animal productivity. Perturbation was also frequently applied to model animals (87.7%), mainly mammals (88.1%), for forward translation of outcomes to human health. In contrast, wild animals largely characterised natural, unperturbed microbiota (79.6%), particularly in pest or pathogen vectoring insects (42.5%). We used network analyses to compare the research foci of each animal group: 'diet' was the main focus in all three, but to different ends: to enhance animal production (domestic), to study non-infectious diseases (model), or to understand microbiota composition (wild). Network metrics quantified model animal studies as the most interdisciplinary, while wild animals incorporated the fewest disciplines. Overall, animal studies, especially model and domestic, cover a broad array of research. Wild animals, however, are the least investigated, but offer under-exploited opportunities to study 'real-life' microbiota.The ISME Journal advance online publication, 11 August 2017; doi:10.1038/ismej.2017.133
    corecore