25 research outputs found
EGFR interacts with the fusion protein of respiratory syncytial virus strain 2-20 and mediates infection and mucin expression.
Respiratory syncytial virus (RSV) is the major cause of viral lower respiratory tract illness in children. In contrast to the RSV prototypic strain A2, clinical isolate RSV 2-20 induces airway mucin expression in mice, a clinically relevant phenotype dependent on the fusion (F) protein of the RSV strain. Epidermal growth factor receptor (EGFR) plays a role in airway mucin expression in other systems; therefore, we hypothesized that the RSV 2-20 F protein stimulates EGFR signaling. Infection of cells with chimeric strains RSV A2-2-20F and A2-2-20GF or over-expression of 2-20 F protein resulted in greater phosphorylation of EGFR than infection with RSV A2 or over-expression of A2 F, respectively. Chemical inhibition of EGFR signaling or knockdown of EGFR resulted in diminished infectivity of RSV A2-2-20F but not RSV A2. Over-expression of EGFR enhanced the fusion activity of 2-20 F protein in trans. EGFR co-immunoprecipitated most efficiently with RSV F proteins derived from "mucogenic" strains. RSV 2-20 F and EGFR co-localized in H292 cells, and A2-2-20GF-induced MUC5AC expression was ablated by EGFR inhibitors in these cells. Treatment of BALB/c mice with the EGFR inhibitor erlotinib significantly reduced the amount of RSV A2-2-20F-induced airway mucin expression. Our results demonstrate that RSV F interacts with EGFR in a strain-specific manner, EGFR is a co-factor for infection, and EGFR plays a role in RSV-induced mucin expression, suggesting EGFR is a potential target for RSV disease
Universal health coverage from multiple perspectives: a synthesis of conceptual literature and global debates
Background: There is an emerging global consensus on the importance of universal health coverage (UHC), but no unanimity on the conceptual definition and scope of UHC, whether UHC is achievable or not, how to move towards it, common indicators for measuring its progress, and its long-term sustainability. This has resulted in various interpretations of the concept, emanating from different disciplinary perspectives. This paper discusses the various dimensions of UHC emerging from these interpretations and argues for the need to pay attention to the complex interactions across the various components of a health system in the pursuit of UHC as a legal human rights issue. Discussion: The literature presents UHC as a multi-dimensional concept, operationalized in terms of universal population coverage, universal financial protection, and universal access to quality health care, anchored on the basis of health care as an international legal obligation grounded in international human rights laws. As a legal concept, UHC implies the existence of a legal framework that mandates national governments to provide health care to all residents while compelling the international community to support poor nations in implementing this right. As a humanitarian social concept, UHC aims at achieving universal population coverage by enrolling all residents into health-related social security systems and securing equitable entitlements to the benefits from the health system for all. As a health economics concept, UHC guarantees financial protection by providing a shield against the catastrophic and impoverishing consequences of out-of-pocket expenditure, through the implementation of pooled prepaid financing systems. As a public health concept, UHC has attracted several controversies regarding which services should be covered: comprehensive services vs. minimum basic package, and priority disease-specific interventions vs. primary health care. Summary: As a multi-dimensional concept, grounded in international human rights laws, the move towards UHC in LMICs requires all states to effectively recognize the right to health in their national constitutions. It also requires a human rights-focused integrated approach to health service delivery that recognizes the health system as a complex phenomenon with interlinked functional units whose effective interaction are essential to reach the equilibrium called UHC
Rigid unit modes and the negative thermal expansion in ZrW2O8
ZrW2O8 has a negative coefficient of thermal expansion from 0.3 K to its decomposition temperature around 1050 K. The negative thermal expansion is isotropic and is not disrupted by the structural phase transition at 430 K. A complicated distribution in reciprocal space of Rigid Unit Mode (RUM) phonons has been found for ZrW2O8 using Lattice Dynamics. The RUMs are very low energy phonons which cause collective rotations of ZrO6 octahedra and WO4 tetrahedra within the crystal structure. These distortions enable ZrW2O8 to contract upon heating
Real-time monitoring of protein conformational changes using a nano-mechanical sensor.
Proteins can switch between different conformations in response to stimuli, such as pH or temperature variations, or to the binding of ligands. Such plasticity and its kinetics can have a crucial functional role, and their characterization has taken center stage in protein research. As an example, Topoisomerases are particularly interesting enzymes capable of managing tangled and supercoiled double-stranded DNA, thus facilitating many physiological processes. In this work, we describe the use of a cantilever-based nanomotion sensor to characterize the dynamics of human topoisomerase II (Topo II) enzymes and their response to different kinds of ligands, such as ATP, which enhance the conformational dynamics. The sensitivity and time resolution of this sensor allow determining quantitatively the correlation between the ATP concentration and the rate of Topo II conformational changes. Furthermore, we show how to rationalize the experimental results in a comprehensive model that takes into account both the physics of the cantilever and the dynamics of the ATPase cycle of the enzyme, shedding light on the kinetics of the process. Finally, we study the effect of aclarubicin, an anticancer drug, demonstrating that it affects directly the Topo II molecule inhibiting its conformational changes. These results pave the way to a new way of studying the intrinsic dynamics of proteins and of protein complexes allowing new applications ranging from fundamental proteomics to drug discovery and development and possibly to clinical practice
Entropy favours open colloidal lattices
Burgeoning experimental and simulation activity seeks to understand the existence of self-assembled colloidal structures that are not close-packed(1-9). Here we describe an analytical theory based on lattice dynamics and supported by experiments that reveals the fundamental role entropy can play in stabilizing open lattices. The entropy we consider is associated with the rotational and vibrational modes unique to colloids interacting through extended attractive patches(10). The theory makes predictions of the implied temperature, pressure and patch-size dependence of the phase diagram of open and close-packed structures. More generally, it provides guidance for the conditions at which targeted patchy colloidal assemblies in two and three dimensions are stable, thus overcoming the difficulty in exploring by experiment or simulation the full range of conceivable parameters