18 research outputs found

    Pattern formation in the transverse section of a laser with a large Fresnel number

    Get PDF
    We experimentally investigate pattern formation in a single-wavelength long laser cavity with a large Fresnel number. Near the laser threshold, we observe a single frequency spatially periodic structure corresponding to titled waves theoretically predicted by the Maxwell-Bloch equations. We also show the presence of secondary instabilities at other wavelengths and polarization instabilities at the same wavelength for different parameter values. (S0031-9007(99)08512-9)

    Vectorial dissipative solitons in vertical-cavity surface-emitting Lasers with delays

    Full text link
    We show that the nonlinear polarization dynamics of a vertical-cavity surface-emitting laser placed into an external cavity leads to the formation of temporal vectorial dissipative solitons. These solitons arise as cycles in the polarization orientation, leaving the total intensity constant. When the cavity round-trip is much longer than their duration, several independent solitons as well as bound states (molecules) may be hosted in the cavity. All these solutions coexist together and with the background solution, i.e. the solution with zero soliton. The theoretical proof of localization is given by the analysis of the Floquet exponents. Finally, we reduce the dynamics to a single delayed equation for the polarization orientation allowing interpreting the vectorial solitons as polarization kinks.Comment: quasi final resubmission version, 12 pages, 9 figure
    corecore