37 research outputs found
Effects of APETALA2 on embryo, endosperm, and seed coat development determine seed size in Arabidopsis
Arabidopsis APETALA2 (AP2) controls seed mass maternally, with ap2 mutants producing larger seeds than wild type. Here, we show that AP2 influences development of the three major seed compartments: embryo, endosperm, and seed coat. AP2 appears to have a significant effect on endosperm development. ap2 mutant seeds undergo an extended period of rapid endosperm growth early in development relative to wild type. This early expanded growth period in ap2 seeds is associated with delayed endosperm cellularization and overgrowth of the endosperm central vacuole. The subsequent period of moderate endosperm growth is also extended in ap2 seeds largely due to persistent cell divisions at the endosperm periphery. The effect of AP2 on endosperm development is mediated by different mechanisms than parent-of-origin effects on seed size observed in interploidy crosses. Seed coat development is affected; integument cells of ap2 mutants are more elongated than wild type. We conclude that endosperm overgrowth and/or integument cell elongation create a larger postfertilization embryo sac into which the ap2 embryo can grow. Morphological development of the embryo is initially delayed in ap2 compared with wild-type seeds, but ap2 embryos become larger than wild type after the bent-cotyledon stage of development. ap2 embryos are able to fill the enlarged postfertilization embryo sac, because they undergo extended periods of cell proliferation and seed filling. We discuss potential mechanisms by which maternally acting AP2 influences development of the zygotic embryo and endosperm to repress seed size
Characterization of Unique Small RNA Populations from Rice Grain
Small RNAs (∼20 to 24 nucleotides) function as naturally occurring molecules critical in developmental pathways in plants and animals [1], [2]. Here we analyze small RNA populations from mature rice grain and seedlings by pyrosequencing. Using a clustering algorithm to locate regions producing small RNAs, we classified hotspots of small RNA generation within the genome. Hotspots here are defined as 1 kb regions within which small RNAs are significantly overproduced relative to the rest of the genome. Hotspots were identified to facilitate characterization of different categories of small RNA regulatory elements. Included in the hotspots, we found known members of 23 miRNA families representing 92 genes, one trans acting siRNA (ta-siRNA) gene, novel siRNA-generating coding genes and phased siRNA generating genes. Interestingly, over 20% of the small RNA population in grain came from a single foldback structure, which generated eight phased 21-nt siRNAs. This is reminiscent of a newly arising miRNA derived from duplication of progenitor genes [3], [4]. Our results provide data identifying distinct populations of small RNAs, including phased small RNAs, in mature grain to facilitate characterization of small regulatory RNA expression in monocot species
Functional Identification and Characterization of the Brassica Napus Transcription Factor Gene BnAP2, the Ortholog of Arabidopsis Thaliana APETALA2
BnAP2, an APETALA2 (AP2)-like gene, has been isolated from Brassica napus cultivar Zhongshuang 9. The cDNA of BnAP2, with 1, 299 bp in length, encoded a transcription factor comprising of 432 amino acid residues. Results from complementary experiment indicated that BnAP2 was completely capable of restoring the phenotype of Arabidopsis ap2-11 mutant. Together with the sequence and expression data, the complementation data suggested that BnAP2 encodes the ortholog of AtAP2. To address the transcriptional activation of BnAP2, we performed transactivation assays in yeast. Fusion protein of BnAP2 with GAL4 DNA binding domain strongly activated transcription in yeast, and the transactivating activity of BnAP2 was localized to the N-terminal 100 amino acids. To further study the function of BnAP2 involved in the phenotype of B. napus, we used a transgenic approach that involved targeted RNA interference (RNAi) repression induced by ihp-RNA. Floral various phenotype defectives and reduced female fertility were observed in B. napus BnAP2-RNAi lines. Loss of the function of BnAP2 gene also resulted in delayed sepal abscission and senescence with the ethylene-independent pathway. In the strong BnAP2-RNAi lines, seeds showed defects in shape, structure and development and larger size. Strong BnAP2-RNAi and wild-type seeds initially did not display a significant difference in morphology at 10 DAF, but the development of BnAP2-RNAi seeds was slower than that of wild type at 20 DAF, and further at 30 DAF, wild-type seeds were essentially at their final size, whereas BnAP2-RNAi seeds stopped growing and developing and gradually withered
Serum screening with Down's syndrome markers to predict pre-eclampsia and small for gestational age: Systematic review and meta-analysis
<p>Abstract</p> <p>Background</p> <p>Reliable antenatal identification of pre-eclampsia and small for gestational age is crucial to judicious allocation of monitoring resources and use of preventative treatment with the prospect of improving maternal/perinatal outcome. The purpose of this systematic review was to determine the accuracy of five serum analytes used in Down's serum screening for prediction of pre-eclampsia and/or small for gestational age.</p> <p>Methods</p> <p>The data sources included Medline, Embase, Cochrane library, Medion (inception to February 2007), hand searching of relevant journals, reference list checking of included articles, contact with experts. Two reviewers independently selected the articles in which the accuracy of an analyte used in Downs's serum screening before the 25<sup>th </sup>gestational week was associated with the occurrence of pre-eclampsia and/or small for gestational age without language restrictions. Two authors independently extracted data on study characteristics, quality and results.</p> <p>Results</p> <p>Five serum screening markers were evaluated. 44 studies, testing 169,637 pregnant women (4376 pre-eclampsia cases) and 86 studies, testing 382,005 women (20,339 fetal growth restriction cases) met the selection criteria. The results showed low predictive accuracy overall. For pre-eclampsia the best predictor was inhibin A>2.79MoM positive likelihood ratio 19.52 (8.33,45.79) and negative likelihood ratio 0.30 (0.13,0.68) (single study). For small for gestational age it was AFP>2.0MoM to predict birth weight < 10<sup>th </sup>centile with birth < 37 weeks positive likelihood ratio 27.96 (8.02,97.48) and negative likelihood ratio 0.78 (0.55,1.11) (single study). A potential clinical application using aspirin as a treatment is given as an example.</p> <p>There were methodological and reporting limitations in the included studies thus studies were heterogeneous giving pooled results with wide confidence intervals.</p> <p>Conclusion</p> <p>Down's serum screening analytes have low predictive accuracy for pre-eclampsia and small for gestational age. They may be a useful means of risk assessment or of use in prediction when combined with other tests.</p
Genetic control of Eucalyptus globulus seed germination
International audienceAbstractKey messageThe maternal genotype has a significant effect on most germination traits ofEucalyptus globulusseeds. These differences can be partly explained by genetic-based differences amongst races, including differences in sensitivity to high temperatures which may be of adaptive significance.ContextSlow and uneven germination of Eucalyptus globulus seeds in commercial nurseries can be a problem which has been linked with periods of high temperature.AimsThis study aimed to determine whether maternal genotype affects the germination of E. globulus seeds.MethodsBy sampling seeds over two seasons from multiple randomised ramets (trees) of maternal genotypes from three races of E. globulus growing in a seed orchard, the extent of genetic control of seed germination responses was assessed at different germination temperatures.ResultsMaternal genotype had a significant effect on most germination traits but a differential response to temperature was more evident for germination proportion than rate traits. Maternal races differed in their rate of seedling development regardless of temperature, but differences in the germination proportion were only detected at high temperatures.ConclusionThe present study highlights the potential adaptive significance of the germination response and the need for seed lot-specific germination testing as both genetics and maternal environment vary
The Cowles Commission and Foundation for Research in Economics
Founded in 1932 by a newspaper heir disillusioned by the failure of forecasters to predict the Great Crash, the Cowles Commission promoted the use of formal mathematical and statistical methods in economics, initially through summer research conferences in Colorado and through support of the Econometric Society (of which Alfred Cowles was secretary-treasurer for decades). After moving to the University of Chicago in 1939, the Cowles Commission sponsored works, many later honored with Nobel Prizes but at the time out of the mainstream of economics, by Haavelmo, Hurwicz and Koopmans on econometrics, Arrow and Debreu on general equilibrium, Yntema and Mosak on general equilibrium in international trade theory, Arrow on social choice, Koopmans on activity analysis, Klein on macroeconometric modelling, Lange, Marschak and Patinkin on macroeconomic theory, and Markowitz on portfolio choice, but came into intense methodological, ideological and personal conflict with the emerging “Chicago school.” This conflict led the Cowles Commission to move to Yale in 1955 as the Cowles Foundation, directed by James Tobin (who had declined to move to Chicago to direct it). The Cowles Foundation remained a leader in the more technical areas of economics, notably with Tobin’s “Yale school” of monetary theory, Scarf’s computable general equilibrium, Shubik in game theory, and later Phillips and Andrews in econometric theory but as formal methods in economic theory and econometrics pervaded the discipline of economics, Cowles (like the Econometric Society) became less distinct from the rest of economics. This entry is part of an archivally-based history of the Cowles Commission and Foundation commissioned by the Cowles Foundation. This paper is the entry on “The Cowles Commission and Foundation for Research in Economics” in The New Palgrave Online https://link.springer.com/referencework/10.1057/978-1-349-95121-5 and is included as a Cowles Foundation Discussion Paper by the kind permission of Springer Nature