1,578 research outputs found

    Variabilité des propriétés physico-chimiques et dénombrement de la flore fermentaire du tchapalo, une bière traditionnelle de sorgho en Côte d’Ivoire

    Get PDF
    Une étude portant sur la variabilité des propriétés physico-chimiques etmicrobiologiques, l’évolution de ces propriétés au cours de la fermentation alcoolique a été réalisée sur des échantillons de moût sucré (produit intermédiaire) et de tchapalo (bière de sorgho) prélevés dans une zone de production massive à Abobo, commune située au Nord-Est d’Abidjan. Il ressort de cette étude que la qualité des moûts et tchapalo produits était constante. Le pH (3,4), les teneurs en sucres (3,6 g/100 g), en protéines (2,9 mg/mL) et en vitamine C (1,5 mg/100 mL) des moûts sucrés étaientstatistiquement les mêmes chez toutes les brasseuses et ne variaient pas d’une production à l’autre. Le tchapalo obtenu après fermentation contenait en moyenne 5,2 % d’éthanol. Le méthanol et le propanol n’ont pas été détectés. Les levures avec 1.9×108 ufc/mL constituaient la microflore dominante du tchapalo. Les bactéries lactiques isolées appartenaient aux genres Lactobacillus et Leuconostoc.Mots-clés : Tchapalo, bière traditionnelle, propriétés physico-chimiques, fermentation

    Multi-objective improvement of software using co-evolution and smart seeding

    Get PDF
    Optimising non-functional properties of software is an important part of the implementation process. One such property is execution time, and compilers target a reduction in execution time using a variety of optimisation techniques. Compiler optimisation is not always able to produce semantically equivalent alternatives that improve execution times, even if such alternatives are known to exist. Often, this is due to the local nature of such optimisations. In this paper we present a novel framework for optimising existing software using a hybrid of evolutionary optimisation techniques. Given as input the implementation of a program or function, we use Genetic Programming to evolve a new semantically equivalent version, optimised to reduce execution time subject to a given probability distribution of inputs. We employ a co-evolved population of test cases to encourage the preservation of the program’s semantics, and exploit the original program through seeding of the population in order to focus the search. We carry out experiments to identify the important factors in maximising efficiency gains. Although in this work we have optimised execution time, other non-functional criteria could be optimised in a similar manner

    Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes

    Get PDF
    Objective Selecting fusion levels based on the Luk et al criteria for operative management of thoracic adolescent idiopathic scoliosis (AIS) with hook and hybrid systems yields acceptable curve correction and balance parameters; however, it is unknown whether utilizing a purely pedicle screw strategy is effective. Utilizing the fulcrum bending radiographic (FBR) to assess curve flexibility to select fusion levels, the following study assessed the efficacy of pedicle screw fixation with alternate level screw strategy (ALSS) for thoracic AIS. Methods A retrospective study with prospective radiographic data collection/analyses (preoperative, postoperative 1-week and minimum 2-year follow-up) of 28 operative thoracic AIS patients undergoing ALSS was performed. Standing coronal/sagittal and FBR Cobb angles, FBR flexibility, fulcrum bending correction index (FBCI), trunkal shift, radiographic shoulder height (RSH), and list were assessed on x-rays. Fusion level selection was based on the Luk et al criteria and compared to conventional techniques. Results In the primary curve, the mean preoperative and postoperative 1 week and last follow-up standing coronal Cobb angles were 59.9, 17.2 and 20.0 degrees, respectively. Eighteen patients (64.3%) had distal levels saved (mean: 1.6 levels) in comparison to conventional techniques. Mean immediate and last follow-up FBCIs were 122.6% and 115.0%, respectively. Sagittal alignment did not statistically differ between any assessment intervals (p>0.05). A decrease in trunkal shift was noted from preoperative to last follow-up (p = 0.003). No statistically significant difference from preoperative to last follow-up was noted in RSH and list (p>0.05). No "add-on" of other vertebra or decompensation was noted and all patients achieved fusion. Conclusions This is the first report to note that using the FBR for decision-making in selecting fusion levels in thoracic AIS patients undergoing management with pedicle screw constructs (e.g. ALSS) is a cost-effective strategy that can achieve clinically-relevant deformity correction that is maintained and without compromising fusion levels.published_or_final_versio

    Selection of fusion levels using the fulcrum bending radiograph for the management of adolescent idiopathic scoliosis patients with alternate level pedicle screw strategy: clinical decision-making and outcomes

    Get PDF
    Objective Selecting fusion levels based on the Luk et al criteria for operative management of thoracic adolescent idiopathic scoliosis (AIS) with hook and hybrid systems yields acceptable curve correction and balance parameters; however, it is unknown whether utilizing a purely pedicle screw strategy is effective. Utilizing the fulcrum bending radiographic (FBR) to assess curve flexibility to select fusion levels, the following study assessed the efficacy of pedicle screw fixation with alternate level screw strategy (ALSS) for thoracic AIS. Methods A retrospective study with prospective radiographic data collection/analyses (preoperative, postoperative 1-week and minimum 2-year follow-up) of 28 operative thoracic AIS patients undergoing ALSS was performed. Standing coronal/sagittal and FBR Cobb angles, FBR flexibility, fulcrum bending correction index (FBCI), trunkal shift, radiographic shoulder height (RSH), and list were assessed on x-rays. Fusion level selection was based on the Luk et al criteria and compared to conventional techniques. Results In the primary curve, the mean preoperative and postoperative 1 week and last follow-up standing coronal Cobb angles were 59.9, 17.2 and 20.0 degrees, respectively. Eighteen patients (64.3%) had distal levels saved (mean: 1.6 levels) in comparison to conventional techniques. Mean immediate and last follow-up FBCIs were 122.6% and 115.0%, respectively. Sagittal alignment did not statistically differ between any assessment intervals (p>0.05). A decrease in trunkal shift was noted from preoperative to last follow-up (p = 0.003). No statistically significant difference from preoperative to last follow-up was noted in RSH and list (p>0.05). No "add-on" of other vertebra or decompensation was noted and all patients achieved fusion. Conclusions This is the first report to note that using the FBR for decision-making in selecting fusion levels in thoracic AIS patients undergoing management with pedicle screw constructs (e.g. ALSS) is a cost-effective strategy that can achieve clinically-relevant deformity correction that is maintained and without compromising fusion levels.published_or_final_versio

    'Unite and conquer': enhanced prediction of protein subcellular localization by integrating multiple specialized tools

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowing the subcellular location of proteins provides clues to their function as well as the interconnectivity of biological processes. Dozens of tools are available for predicting protein location in the eukaryotic cell. Each tool performs well on certain data sets, but their predictions often disagree for a given protein. Since the individual tools each have particular strengths, we set out to integrate them in a way that optimally exploits their potential. The method we present here is applicable to various subcellular locations, but tailored for predicting whether or not a protein is localized in mitochondria. Knowledge of the mitochondrial proteome is relevant to understanding the role of this organelle in global cellular processes.</p> <p>Results</p> <p>In order to develop a method for enhanced prediction of subcellular localization, we integrated the outputs of available localization prediction tools by several strategies, and tested the performance of each strategy with known mitochondrial proteins. The accuracy obtained (up to 92%) surpasses by far the individual tools. The method of integration proved crucial to the performance. For the prediction of mitochondrion-located proteins, integration via a two-layer decision tree clearly outperforms simpler methods, as it allows emphasis of biologically relevant features such as the mitochondrial targeting peptide and transmembrane domains.</p> <p>Conclusion</p> <p>We developed an approach that enhances the prediction accuracy of mitochondrial proteins by uniting the strength of specialized tools. The combination of machine-learning based integration with biological expert knowledge leads to improved performance. This approach also alleviates the conundrum of how to choose between conflicting predictions. Our approach is easy to implement, and applicable to predicting subcellular locations other than mitochondria, as well as other biological features. For a trial of our approach, we provide a webservice for mitochondrial protein prediction (named YimLOC), which can be accessed through the AnaBench suite at http://anabench.bcm.umontreal.ca/anabench/. The source code is provided in the Additional File <supplr sid="S2">2</supplr>.</p> <suppl id="S2"> <title> <p>Additional file 2</p> </title> <text> <p>This file contains scripts for the online server YimLOC. Please note that there scripts only codes for the ready-to-use STACK-mem-DT described in the main text. The scripts do not provide the training process.</p> </text> <file name="1471-2105-8-420-S2.pdf"> <p>Click here for file</p> </file> </suppl

    Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization

    Get PDF
    One fundamental requirement for quantum computation is to perform universal manipulations of quantum bits at rates much faster than the qubit's rate of decoherence. Recently, fast gate operations have been demonstrated in logical spin qubits composed of two electron spins where the rapid exchange of the two electrons permits electrically controllable rotations around one axis of the qubit. However, universal control of the qubit requires arbitrary rotations around at least two axes. Here we show that by subjecting each electron spin to a magnetic field of different magnitude we achieve full quantum control of the two-electron logical spin qubit with nanosecond operation times. Using a single device, a magnetic field gradient of several hundred milliTesla is generated and sustained using dynamic nuclear polarization of the underlying Ga and As nuclei. Universal control of the two-electron qubit is then demonstrated using quantum state tomography. The presented technique provides the basis for single and potentially multiple qubit operations with gate times that approach the threshold required for quantum error correction.Comment: 11 pages, 4 figures. Supplementary Material included as ancillary fil
    corecore