692 research outputs found

    Using GeneReg to construct time delay gene regulatory networks

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Understanding gene expression and regulation is essential for understanding biological mechanisms. Because gene expression profiling has been widely used in basic biological research, especially in transcription regulation studies, we have developed GeneReg, an easy-to-use R package, to construct gene regulatory networks from time course gene expression profiling data; More importantly, this package can provide information about time delays between expression change in a regulator and that of its target genes.</p> <p>Findings</p> <p>The R package GeneReg is based on time delay linear regression, which can generate a model of the expression levels of regulators at a given time point against the expression levels of their target genes at a later time point. There are two parameters in the model, time delay and regulation coefficient. Time delay is the time lag during which expression change of the regulator is transmitted to change in target gene expression. Regulation coefficient expresses the regulation effect: a positive regulation coefficient indicates activation and negative indicates repression. GeneReg was implemented on a real Saccharomyces cerevisiae cell cycle dataset; more than thirty percent of the modeled regulations, based entirely on gene expression files, were found to be consistent with previous discoveries from known databases.</p> <p>Conclusions</p> <p>GeneReg is an easy-to-use, simple, fast R package for gene regulatory network construction from short time course gene expression data. It may be applied to study time-related biological processes such as cell cycle, cell differentiation, or causal inference.</p

    Predictive value of multiple cytokines and chemokines for mortality in an admixed population: 15-year follow-up of the Bambui-Epigen (Brazil) cohort study of aging

    Get PDF
    Inflammation, particularly elevated IL-6 serum levels, has been associated with increased mortality risk, mostly in Caucasians. The influence of genetic ethno-racial background on this association is unknown. We examined associations between baseline serum levels of Interleukin-6 (IL-6) and other cytokines (IL1-2, TNF, IL-10, and IL1ÎČ) and chemokines (CCL2, CCL5, CXCL8, CXCL9 and CXCL10) with 15-year mortality in 1,191 admixed Brazilians aged 60 years and over. Elevated IL6 level (but not other biomarkers) was associated with increased risk of deaths with fully adjusted hazard ratios of 1.51 (95% CI = 1.15, 1.97), 1.54 (95% CI = 1.20, 1.96) and 1.79 (95% CI = 1.40, 2.29) for the 2nd, 3rd and the highest quartiles, respectively. Genomic African and Native American proportions did not modify the association (p > 0.05). The discriminatory ability to predict death of a model based on IL-6 alone was similar as that of a comprehensive morbidity score (C statistics = 0.59 and 0.60, respectively). The abilities of IL-6 and the morbidity score models to predict death remained stable for very long term after the baseline measurement. Our results indicate that genome-based African and Native American ancestries have no impact on the prognostic value of IL-6 for mortality

    A review of exposure assessment methods for epidemiological studies of health effects related to industrially contaminated sites

    Get PDF
    BACKGROUND: this paper is based upon work from COST Action ICSHNet. Health risks related to living close to industrially contaminated sites (ICSs) are a public concern. Toxicology-based risk assessment of single contaminants is the main approach to assess health risks, but epidemiological studies which investigate the relationships between exposure and health directly in the affected population have contributed important evidence. Limitations in exposure assessment have substantially contributed to uncertainty about associations found in epidemiological studies. OBJECTIVES: to examine exposure assessment methods that have been used in epidemiological studies on ICSs and to provide recommendations for improved exposure assessment in epidemiological studies by comparing exposure assessment methods in epidemiological studies and risk assessments. METHODS: after defining the multi-media framework of exposure related to ICSs, we discussed selected multi-media models applied in Europe. We provided an overview of exposure assessment in 54 epidemiological studies from a systematic review of hazardous waste sites; a systematic review of 41 epidemiological studies on incinerators and 52 additional studies on ICSs and health identified for this review. RESULTS: we identified 10 multi-media models used in Europe primarily for risk assessment. Recent models incorporated estimation of internal biomarker levels. Predictions of the models differ particularly for the routes ‘indoor air inhalation’ and ‘vegetable consumption’. Virtually all of the 54 hazardous waste studies used proximity indicators of exposure, based on municipality or zip code of residence (28 studies) or distance to a contaminated site (25 studies). One study used human biomonitoring. In virtually all epidemiological studies, actual land use was ignored. In the 52 additional studies on contaminated sites, proximity indicators were applied in 39 studies, air pollution dispersion modelling in 6 studies, and human biomonitoring in 9 studies. Exposure assessment in epidemiological studies on incinerators included indicators (presence of source in municipality and distance to the incinerator) and air dispersion modelling. Environmental multi-media modelling methods were not applied in any of the three groups of studies. CONCLUSIONS: recommendations for refined exposure assessment in epidemiological studies included the use of more sophisticated exposure metrics instead of simple proximity indicators where feasible, as distance from a source results in misclassification of exposure as it ignores key determinants of environmental fate and transport, source characteristics, land use, and human consumption behaviour. More validation studies using personal exposure or human biomonitoring are needed to assess misclassification of exposure. Exposure assessment should take more advantage of the detailed multi-media exposure assessment procedures developed for risk assessment. The use of indicators can be substantially improved by linking definition of zones of exposure to existing knowledge of extent of dispersion. Studies should incorporate more often land use and individual behaviour
    • 

    corecore