1,688 research outputs found

    Hospitalised patients with suspected 2009 H1N1 Influenza A in a hospital in Norway, July - December 2009

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The main objective of this study was to describe the patients who were hospitalised at Oslo University Hospital Aker during the first wave of pandemic Influenza A (H1N1) in Norway.</p> <p>Methods</p> <p>Clinical data on all patients hospitalised with influenza-like illness from July to the end of November 2009 were collected prospectively. Patients with confirmed H1N1 Influenza A were compared to patients with negative H1N1 tests.</p> <p>Results</p> <p>182 patients were hospitalised with suspected H1N1 Influenza A and 64 (35%) tested positive. Seventeen patients with positive tests (27%) were admitted to an intensive care unit and four patients died (6%). The H1N1 positive patients were younger, consisted of a higher proportion of non-ethnic Norwegians, had a higher heart rate on admission, and fewer had pre-existing hypertension, compared to the H1N1 negative patients. However, hypertension was the only medical condition that was significantly associated with a more serious outcome defined as ICU admission or death, with a univariate odds ratio of the composite endpoint in H1N1 positive and negative patients of 6.1 (95% CI 1.3-29.3) and 3.2 (95% CI 1.2-8.7), respectively. Chest radiography revealed pneumonia in 24/59 H1N1 positive patients. 63 of 64 H1N1 positive patients received oseltamivir.</p> <p>Conclusions</p> <p>The extra burden of hospitalisations was relatively small and we managed to admit all the patients with suspected H1N1 influenza without opening new pandemic isolation wards. The morbidity and mortality were similar to reports from comparable countries. Established hypertension was associated with more severe morbidity and patients with hypertension should be considered candidates for vaccination programs in future pandemics.</p

    Gene ontology based transfer learning for protein subcellular localization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Prediction of protein subcellular localization generally involves many complex factors, and using only one or two aspects of data information may not tell the true story. For this reason, some recent predictive models are deliberately designed to integrate multiple heterogeneous data sources for exploiting multi-aspect protein feature information. Gene ontology, hereinafter referred to as <it>GO</it>, uses a controlled vocabulary to depict biological molecules or gene products in terms of biological process, molecular function and cellular component. With the rapid expansion of annotated protein sequences, gene ontology has become a general protein feature that can be used to construct predictive models in computational biology. Existing models generally either concatenated the <it>GO </it>terms into a flat binary vector or applied majority-vote based ensemble learning for protein subcellular localization, both of which can not estimate the individual discriminative abilities of the three aspects of gene ontology.</p> <p>Results</p> <p>In this paper, we propose a Gene Ontology Based Transfer Learning Model (<it>GO-TLM</it>) for large-scale protein subcellular localization. The model transfers the signature-based homologous <it>GO </it>terms to the target proteins, and further constructs a reliable learning system to reduce the adverse affect of the potential false <it>GO </it>terms that are resulted from evolutionary divergence. We derive three <it>GO </it>kernels from the three aspects of gene ontology to measure the <it>GO </it>similarity of two proteins, and derive two other spectrum kernels to measure the similarity of two protein sequences. We use simple non-parametric cross validation to explicitly weigh the discriminative abilities of the five kernels, such that the time & space computational complexities are greatly reduced when compared to the complicated semi-definite programming and semi-indefinite linear programming. The five kernels are then linearly merged into one single kernel for protein subcellular localization. We evaluate <it>GO-TLM </it>performance against three baseline models: <it>MultiLoc, MultiLoc-GO </it>and <it>Euk-mPLoc </it>on the benchmark datasets the baseline models adopted. 5-fold cross validation experiments show that <it>GO-TLM </it>achieves substantial accuracy improvement against the baseline models: 80.38% against model <it>Euk-mPLoc </it>67.40% with <it>12.98% </it>substantial increase; 96.65% and 96.27% against model <it>MultiLoc-GO </it>89.60% and 89.60%, with <it>7.05% </it>and <it>6.67% </it>accuracy increase on dataset <it>MultiLoc plant </it>and dataset <it>MultiLoc animal</it>, respectively; 97.14%, 95.90% and 96.85% against model <it>MultiLoc-GO </it>83.70%, 90.10% and 85.70%, with accuracy increase <it>13.44%</it>, <it>5.8% </it>and <it>11.15% </it>on dataset <it>BaCelLoc plant</it>, dataset <it>BaCelLoc fungi </it>and dataset <it>BaCelLoc animal </it>respectively. For <it>BaCelLoc </it>independent sets, <it>GO-TLM </it>achieves 81.25%, 80.45% and 79.46% on dataset <it>BaCelLoc plant holdout</it>, dataset <it>BaCelLoc plant holdout </it>and dataset <it>BaCelLoc animal holdout</it>, respectively, as compared against baseline model <it>MultiLoc-GO </it>76%, 60.00% and 73.00%, with accuracy increase <it>5.25%</it>, <it>20.45% </it>and <it>6.46%</it>, respectively.</p> <p>Conclusions</p> <p>Since direct homology-based <it>GO </it>term transfer may be prone to introducing noise and outliers to the target protein, we design an explicitly weighted kernel learning system (called Gene Ontology Based Transfer Learning Model, <it>GO-TLM</it>) to transfer to the target protein the known knowledge about related homologous proteins, which can reduce the risk of outliers and share knowledge between homologous proteins, and thus achieve better predictive performance for protein subcellular localization. Cross validation and independent test experimental results show that the homology-based <it>GO </it>term transfer and explicitly weighing the <it>GO </it>kernels substantially improve the prediction performance.</p

    One-shot genitalia are not an evolutionary dead end - Regained male polygamy in a sperm limited spider species

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Monogynous mating systems with extremely low male mating rates have several independent evolutionary origins and are associated with drastic adaptations involving self-sacrifice, one-shot genitalia, genital damage, and termination of spermatogenesis immediately after maturation. The combination of such extreme traits likely restricts evolutionary potential perhaps up to the point of making low male mating rates irreversible and hence may constitute an evolutionary dead end. Here, we explore the case of a reversion to multiple mating from monogynous ancestry in golden orb-web spiders, <it>Nephila senegalensis</it>.</p> <p>Results</p> <p>Male multiple mating is regained by the loss of genital damage and sexual cannibalism but spermatogenesis is terminated with maturation, restricting males to a single loading of their secondary mating organs and a fixed supply of sperm. However, males re-use their mating organs and by experimentally mating males to many females, we show that the sperm supply is divided between copulations without reloading the pedipalps.</p> <p>Conclusion</p> <p>By portioning their precious sperm supply, males achieve an average mating rate of four females which effectively doubles the maximal mating rate of their ancestors. A heritage of one-shot genitalia does not completely restrict the potential to increase mating rates in <it>Nephila </it>although an upper limit is defined by the available sperm load. Future studies should now investigate how males use this potential in the field and identify selection pressures responsible for a reversal from monogynous to polygynous mating strategies.</p

    A Synthesis of Global Urbanization Projections

    Get PDF
    This chapter reviews recent literature on global projections of future urbanization, covering the population, economic and physical extent perspectives. We report on several recent findings based on studies and reports on global patterns of urbanization. Specifically, we review new literature that makes projections about the spatial pattern, rate, and magnitude of urbanization change in the next 30–50 years. While projections should be viewed and utilized with caution, the chapter synthesis reports on several major findings that will have significant socioeconomic and environmental impacts including the following: By 2030, world urban population is expected to increase from the current 3.4 billion to almost 5 billion; Urban areas dominate the global economy – urban economies currently generate more than 90 % of global Gross Value Added; From 2000 to 2030, the percent increase in global urban land cover will be over 200 % whereas the global urban population will only grow by a little over 70 %. Our synthesis of recent projections suggest that between 50%–60% of the total urban land in existence in 2030 will be built in the first three decades of the 21st century. Challenges and limitations of urban dynamic projections are discussed, as well as possible innovative applications and potential pathways towards sustainable urban futures

    Interleukin-1β sequesters hypoxia inducible factor 2α to the primary cilium.

    Get PDF
    BACKGROUND: The primary cilium coordinates signalling in development, health and disease. Previously we have shown that the cilium is essential for the anabolic response to loading and the inflammatory response to interleukin-1β (IL-1β). We have also shown the primary cilium elongates in response to IL-1β exposure. Both anabolic phenotype and inflammatory pathology are proposed to be dependent on hypoxia-inducible factor 2 alpha (HIF-2α). The present study tests the hypothesis that an association exists between the primary cilium and HIFs in inflammatory signalling. RESULTS: Here we show, in articular chondrocytes, that IL-1β-induces primary cilia elongation with alterations to cilia trafficking of arl13b. This elongation is associated with a transient increase in HIF-2α expression and accumulation in the primary cilium. Prolyl hydroxylase inhibition results in primary cilia elongation also associated with accumulation of HIF-2α in the ciliary base and axoneme. This recruitment and the associated cilia elongation is not inhibited by blockade of HIFα transcription activity or rescue of basal HIF-2α expression. Hypomorphic mutation to intraflagellar transport protein IFT88 results in limited ciliogenesis. This is associated with increased HIF-2α expression and inhibited response to prolyl hydroxylase inhibition. CONCLUSIONS: These findings suggest that ciliary sequestration of HIF-2α provides negative regulation of HIF-2α expression and potentially activity. This study indicates, for the first time, that the primary cilium regulates HIF signalling during inflammation

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    T2 Mapping from Super-Resolution-Reconstructed Clinical Fast Spin Echo Magnetic Resonance Acquisitions

    Get PDF
    Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitative techniques require long acquisition times and therefore cannot be straightforwardly translated to in utero brain developmental studies. In clinical fetal brain magnetic resonance imaging routine, 2D low-resolution T2-weighted fast spin echo sequences are used to minimize the effects of unpredictable fetal motion during acquisition. As super-resolution techniques make it possible to reconstruct a 3D high-resolution volume of the fetal brain from clinical low-resolution images, their combination with quantitative acquisition schemes could provide fast and accurate T2 measurements. In this context, the present work demonstrates the feasibility of using super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at every echo time and subsequent T2 mapping of samples whose relaxometric properties are close to those of fetal brain tissue. We demonstrate that this approach is highly repeatable, accurate and robust when using six echo times (total acquisition time under 9 minutes) as compared to gold-standard single-echo spin echo sequences (several hours for one single 2D slice)

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes
    corecore