33 research outputs found

    Transient Activation of Hematopoietic Stem and Progenitor Cells by IFNγ during Acute Bacterial Infection

    Get PDF
    How hematopoietic stem cells (HSCs) respond to inflammatory signals during infections is not well understood. Our studies have used a murine model of ehrlichiosis, an emerging tick-born disease, to address how infection impacts hematopoietic function. Infection of C57BL/6 mice with the intracellular bacterium, Ehrlichia muris, results in anemia and thrombocytopenia, similar to what is observed in human ehrlichiosis patients. In the mouse, infection promotes myelopoiesis, a process that is critically dependent on interferon gamma (IFNγ) signaling. In the present study, we demonstrate that E. muris infection also drives the transient proliferation and expansion of bone marrow Lin-negative Sca-1+ cKit+ (LSK) cells, a population of progenitor cells that contains HSCs. Expansion of the LSK population in the bone marrow was associated with a loss of dormant, long-term repopulating HSCs, reduced engraftment, and a bias towards myeloid lineage differentiation within that population. The reduced engraftment and myeloid bias of the infection-induced LSK cells was transient, and was most pronounced on day 8 post-infection. The infection-induced changes were accompanied by an expansion of more differentiated multipotent progenitor cells, and required IFNγ signaling. Thus, in response to inflammatory signals elicited during acute infection, HSCs can undergo a rapid, IFNγ-dependent, transient shift from dormancy to activity, ostensibly, to provide the host with additional or better-armed innate cells for host defense. Similar changes in hematopoietic function likely underlie many different infections of public health importance

    Extramedullary Myelopoiesis in Malaria Depends on Mobilization of Myeloid-Restricted Progenitors by IFN-γ Induced Chemokines

    Get PDF
    Resolution of a variety of acute bacterial and parasitic infections critically relies on the stimulation of myelopoiesis leading in cases to extramedullary hematopoiesis. Here, we report the isolation of the earliest myeloid-restricted progenitors in acute infection with the rodent malaria parasite, Plasmodium chabaudi. The rapid disappearance of these infection-induced myeloid progenitors from the bone marrow (BM) equated with contraction of the functional myeloid potential in that organ. The loss of BM myelopoiesis was not affected by the complete genetic inactivation of toll-like receptor signaling. De-activation of IFN-γ signaling completely abrogated the contraction of BM myeloid progenitors. Radiation chimeras of Ifngr1-null and control BM revealed that IFN-γ signaling in an irradiation-resistant stromal compartment was crucial for the loss of early myeloid progenitors. Systemic IFN-γ triggered the secretion of C-C motif ligand chemokines CCL2 and CCL7 leading to the egress of early, myeloid-committed progenitors from the bone marrow mediated by their common receptor CCR2. The mobilization of myeloid progenitors initiated extramedullary myelopoiesis in the spleen in a CCR2-dependent manner resulting in augmented myelopoiesis during acute malaria. Consistent with the lack of splenic myelopoiesis in the absence of CCR2 we observed a significant persistence of parasitemia in malaria infected CCR2-deficient hosts. Our findings reveal how the activated immune system mobilizes early myeloid progenitors out of the BM thereby transiently establishing myelopoiesis in the spleen in order to contain and resolve the infection locally

    Zika virus – emergence, evolution, pathology, diagnosis, and control: current global scenario and future perspectives – a comprehensive review

    No full text
    This review converses the Zika virus which has attained global concern due to its rapid pandemic potential and impact on humans. Though Zika virus was first isolated in 1947, till the recent large-scale outbreak which occurred in Micronesia, in 2007, the virus was placed into the innocuous pathogen category. The World Health Organization on 1 February 2016 declared it as a 'Public Health Emergency of International Concern.' Of the note, American as well as Pacific Island strains/isolates is relatively closer to Asian lineage strains. The African and American strains share more than 87.5% and 95% homologies with Asian strains/isolates, respectively. Asian strains form independent clusters, except those isolated from China, suggesting relatively more diversity than African strains. Prevention and control are mainly aimed at the vector population (mosquitoes) with Aedes aegypti being the main species. Surveys in Africa and Asia indicated seropositivity in various animal species. However, so far its natural reservoir is unknown. There is an urgent need to understand why Zika virus has shifted from being a virus that caused mild illness to unforeseen birth defects as well as autoimmune-neurological problems. Unfortunately, an effective vaccine is not available yet. Availability of cryo-electron microscopy based on 3.8 Å resolution revealing mature Zika virus structure and the probable virus attachment site to host cell would provide critical insights into the development of antiviral treatments and vaccines
    corecore