13 research outputs found

    Pharmacological Evaluation of the Long-Term Effects of Xanomeline on the M1 Muscarinic Acetylcholine Receptor

    Get PDF
    Xanomeline is a unique agonist of muscarinic receptors that possesses functional selectivity at the M1 and M4 receptor subtypes. It also exhibits wash-resistant binding to and activation of the receptor. In the present work we investigated the consequences of this type of binding of xanomeline on the binding characteristics and function of the M1 muscarinic receptor. Pretreatment of CHO cells that stably express the M1 receptor for 1 hr with increasing concentrations of xanomeline followed by washing and waiting for an additional 23 hr in control culture media transformed xanomeline-induced inhibition of [3H]NMS binding from monophasic to biphasic. The high-affinity xanomeline binding site exhibited three orders of magnitude higher affinity than in the case of xanomeline added directly to the binding assay medium containing control cells. These effects were associated with a marked decrease in maximal radioligand binding and attenuation of agonist-induced increase in PI hydrolysis and were qualitatively similar to those caused by continuous incubation of cells with xanomeline for 24 hr. Attenuation of agonist-induced PI hydrolysis by persistently-bound xanomeline developed with a time course that parallels the return of receptor activation by prebound xanomeline towards basal levels. Additional data indicated that blockade of the receptor orthosteric site or the use of a non-functional receptor mutant reversed the long-term effects of xanomeline, but not its persistent binding at an allosteric site. Furthermore, the long-term effects of xanomeline on the receptor are mainly due to receptor down-regulation rather than internalization

    Suppression of ovarian hormones in adolescent rats has no effect on anxiety-like behaviour or c-fos activation in the amygdala

    Get PDF
    Support was provided the British Society for Neuroendocrinology, Carnegie Trust for the Universities of Scotland and School of Psychology & Neuroscience, University of St Andrews.In humans, sex differences in mood disorders emerge during adolescence, with prevalence rates being consistently higher in females than males. It has been hypothesised that exposure to endogenous ovarian hormones during adolescence enhances the susceptibility of females to mood disorders from this stage of life onwards. However, experimental evidence in favour of this hypothesis is lacking. In the present study, we examined the long‐term effects of suppressing adolescent gonadal hormone levels in a group of female Lister‐hooded rats via administration of a gonadotrophin‐releasing hormone antagonist (Antide; administered on postnatal day [PND] 28 and 42) compared to control females and males (n = 14 per group). We predicted that, in adulthood, Antide‐treated female rats would exhibit more male‐like behaviour than control females in novel environments (elevated‐plus maze, open field and light‐dark box), in response to novel objects and novel social partners, and in an acoustic startle task. Progesterone and luteinising hormone assays (which were conducted on blood samples collected on PND 55/56 and 69/70) confirmed that the hypothalamic‐pituitary‐gonadal axis was temporarily suppressed by Antide treatment. In addition, Antide‐treated females were found to exhibit a modest pubertal delay, as measured by vaginal opening, which was comparable in length to the pubertal delay that has been induced by adolescent exposure to alcohol or stress in previous studies of female rats. However, Antide‐treated females did not substantially differ from control females on any of the behavioural tests, despite the evidence for predicted sex differences in some measures. Following the acoustic startle response task, all subjects were culled and perfused, and c‐Fos staining was conducted in the medial and basolateral amygdala, with the results showing no significant differences in cell counts between the groups. These findings suggest that ovarian hormone exposure during adolescence does not have long‐term effects on anxiety‐related responses in female rats.Publisher PDFPeer reviewe

    Importance of investing in adolescence from a developmental science perspective.

    No full text
    This review summarizes the case for investing in adolescence as a period of rapid growth, learning, adaptation, and formational neurobiological development. Adolescence is a dynamic maturational period during which young lives can pivot rapidly-in both negative and positive directions. Scientific progress in understanding adolescent development provides actionable insights into windows of opportunity during which policies can have a positive impact on developmental trajectories relating to health, education, and social and economic success. Given current global changes and challenges that affect adolescents, there is a compelling need to leverage these advances in developmental science to inform strategic investments in adolescent health
    corecore