58 research outputs found
Effect of Baseline HIV Disease Parameters on CD4+ T Cell Recovery After Antiretroviral Therapy Initiation in Kenyan Women
Antiretroviral therapy (ART) for HIV infection reconstitutes the immune system and improves survival. However, the rate and extent of CD4+ T cell recovery varies widely. We assessed the impact of several factors on immune reconstitution in a large Kenyan cohort.HIV-infected female sex workers from a longitudinal cohort, with at least 1 year of pre-ART and 6 months of post-ART follow-up (n = 79), were enrolled in the current study. The median pre-ART follow-up was 4,040 days. CD4 counts were measured biannually and viral loads where available. The median CD4 count at ART initiation was 180 cells/ul, which increased to 339 cells/ul at the most recent study visit. The rate of CD4+ T cell increase on ART was 7.91 cells/month (mean = 13, range -25.92 to 169.4). LTNP status prior to ART initiation did not associate with the rate of CD4 recovery on ART. In univariate analyses, associations were observed for CD4 recovery rate and duration of pre-ART immunosuppression (r = -0.326, p = 0.004) and CD4 nadir (r = 0.284, p = 0.012). In multivariate analysis including age, CD4 nadir, duration of HIV infection, duration of pre-ART immunosuppression, and baseline viral load, only CD4 nadir (p = 0.007) and not duration of immunosuppression (p = 0.87) remained significantly associated with the rate of CD4 recovery.These data suggest that prior duration of immune suppression does not predict subsequent recovery once ART is initiated and confirm the previous observation that the degree of CD4 depletion prior to ART initiation is the most important determinant of subsequent immune reconstitution
Burst-Time-Dependent Plasticity Robustly Guides ON/OFF Segregation in the Lateral Geniculate Nucleus
Spontaneous retinal activity (known as “waves”) remodels synaptic connectivity to the lateral geniculate nucleus (LGN) during development. Analysis of retinal waves recorded with multielectrode arrays in mouse suggested that a cue for the segregation of functionally distinct (ON and OFF) retinal ganglion cells (RGCs) in the LGN may be a desynchronization in their firing, where ON cells precede OFF cells by one second. Using the recorded retinal waves as input, with two different modeling approaches we explore timing-based plasticity rules for the evolution of synaptic weights to identify key features underlying ON/OFF segregation. First, we analytically derive a linear model for the evolution of ON and OFF weights, to understand how synaptic plasticity rules extract input firing properties to guide segregation. Second, we simulate postsynaptic activity with a nonlinear integrate-and-fire model to compare findings with the linear model. We find that spike-time-dependent plasticity, which modifies synaptic weights based on millisecond-long timing and order of pre- and postsynaptic spikes, fails to segregate ON and OFF retinal inputs in the absence of normalization. Implementing homeostatic mechanisms results in segregation, but only with carefully-tuned parameters. Furthermore, extending spike integration timescales to match the second-long input correlation timescales always leads to ON segregation because ON cells fire before OFF cells. We show that burst-time-dependent plasticity can robustly guide ON/OFF segregation in the LGN without normalization, by integrating pre- and postsynaptic bursts irrespective of their firing order and over second-long timescales. We predict that an LGN neuron will become ON- or OFF-responsive based on a local competition of the firing patterns of neighboring RGCs connecting to it. Finally, we demonstrate consistency with ON/OFF segregation in ferret, despite differences in the firing properties of retinal waves. Our model suggests that diverse input statistics of retinal waves can be robustly interpreted by a burst-based rule, which underlies retinogeniculate plasticity across different species
Genital inflammation undermines the effectiveness of tenofovir gel in preventing HIV acquisition in women.
CAPRISA, 2018.Abstract available in pdf
Ion channel clustering enhances weak electric field detection by neutrophils: apparent roles of SKF96365-sensitive cation channels and myeloperoxidase trafficking in cellular responses
We have tested Galvanovskis and Sandblom’s prediction that ion channel clustering enhances weak electric field detection by cells as well as how the elicited signals couple to metabolic alterations. Electric field application was timed to coincide with certain known intracellular chemical oscillators (phase-matched conditions). Polarized, but not spherical, neutrophils labeled with anti-K v 1.3, FL-DHP, and anti-TRP1, but not anti-T-type Ca 2+ channels, displayed clusters at the lamellipodium. Resonance energy transfer experiments showed that these channel pairs were in close proximity. Dose-field sensitivity studies of channel blockers suggested that K + and Ca 2+ channels participate in field detection, as judged by enhanced oscillatory NAD(P)H amplitudes. Further studies suggested that K + channel blockers act by reducing the neutrophil’s membrane potential. Mibefradil and SKF93635, which block T-type Ca 2+ channels and SOCs, respectively, affected field detection at appropriate doses. Microfluorometry and high-speed imaging of indo-1-labeled neutrophils was used to examine Ca 2+ signaling. Electric fields enhanced Ca 2+ spike amplitude and triggered formation of a second traveling Ca 2+ wave. Mibefradil blocked Ca 2+ spikes and waves. Although 10 μM SKF96365 mimicked mibefradil, 7 μM SKF96365 specifically inhibited electric field-induced Ca 2+ signals, suggesting that one SKF96365-senstive site is influenced by electric fields. Although cells remained morphologically polarized, ion channel clusters at the lamellipodium and electric field sensitivity were inhibited by methyl-β-cyclodextrin. As a result of phase-matched electric field application in the presence of ion channel clusters, myeloperoxidase (MPO) was found to traffic to the cell surface. As MPO participates in high amplitude metabolic oscillations, this suggests a link between the signaling apparatus and metabolic changes. Furthermore, electric field effects could be blocked by MPO inhibition or removal while certain electric field effects were mimicked by the addition of MPO to untreated cells. Therefore, channel clustering plays an important role in electric field detection and downstream responses of morphologically polarized neutrophils. In addition to providing new mechanistic insights concerning electric field interactions with cells, our work suggests novel methods to remotely manipulate physiological pathways.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/46726/1/249_2005_Article_1.pd
Targeted agents and immunotherapies: optimizing outcomes in melanoma
Treatment options for patients with metastatic melanoma, and especially BRAF-mutant melanoma, have changed dramatically in the past 5 years, with the FDA approval of eight new therapeutic agents. During this period, the treatment paradigm for BRAF-mutant disease has evolved rapidly: the standard-of-care BRAF-targeted approach has shifted from single-agent BRAF inhibition to combination therapy with a BRAF and a MEK inhibitor. Concurrently, immunotherapy has transitioned from cytokine-based treatment to antibody-mediated blockade of the cytotoxic T-lymphocyte-associated antigen-4 (CTLA-4) and, now, the programmed cell-death protein 1 (PD-1) immune checkpoints. These changes in the treatment landscape have dramatically improved patient outcomes, with the median overall survival of patients with advanced-stage melanoma increasing from approximately 9 months before 2011 to at least 2 years - and probably longer for those with BRAF-V600-mutant disease. Herein, we review the clinical trial data that established the standard-of-care treatment approaches for advanced-stage melanoma. Mechanisms of resistance and biomarkers of response to BRAF-targeted treatments and immunotherapies are discussed, and the contrasting clinical benefits and limitations of these therapies are explored. We summarize the state of the field and outline a rational approach to frontline-treatment selection for each individual patient with BRAF-mutant melanoma
- …