2,137 research outputs found

    In silico mining of micro-RNAs from Spodoptera frugiperda (Smith) (Lepidoptera: Noctuidae)

    Get PDF
    MicroRNAs (miRNAs) are small, endogenously, non-coding genes that regulate protein production either by mRNA cleavage or by translational repression in eukaryotes and viruses. miRNAs plays a key role in biological processes including growth, development and physiology of an organism. In this study, we employed insilico approaches to identify the miRNAs from Spodoptera frugiperda, a major pest of small grain crops. A total of seven miRNAs were identified and characterized from 67,360 expressed sequence tags (ESTs) of S. frugiperda with: 1) mature and pre-miRNAs sizes vary from 19 to 25 ans 61 to 95 nucleotides respectively; 2) minimum free energy ranged from -31.70 to -21.00 kcal/mol; and 3) (A + U) content varied from 27 to 60. The functional annotation of these miRNAs were identified as regulation of transcription factors, catalytic activities and signal transduction pathways. Further studies of these miRNAs will help to carryout functional analyses, which promises more towards insect pest management free of insecticides and pesticides.Keywords: MicroRNAs, translational repression, Spodoptera frugiperda, expressed sequence tags, minimum free energy, insect pest managementAfrican Journal of Biotechnology, Vol. 13(1), pp. 32-43, 1 January, 201

    Fermentation process for alcoholic beverage production from mahua (Madhuca indica J. F. Mel.) flowers

    Get PDF
    Mahua flowers are rich in sugar (68-72%), in addition to a number of minerals and one of the most important raw materials for alcohol fermentation. The present investigation was for the development of a non-distilled alcoholic beverage from Mahua flowers. Eighteen (18) treatment combinations consisting of two temperatures (25 and 30°C), three pH (4.0, 4.5 and 5.0) and three period of fermentation (7, 14 and 21 days) were used in the fermentation conditions. The maximum yield of ethanol (9.51 %) occurred at 25°C with pH 4.5 after 14 days of  fermentation of Mahua flower juice. The fermented non-distilled alcoholic beverage contained total sugar (8.83 mg/ml), reducing sugar (0.82 mg/ml), total soluble solids (6.37°Brix) titrable acidity (0.65 %), and volatile acidity (0.086%). Methanol was not detected at any stage of fermentation. The developed fermented alcoholic beverage had characteristic flavor and aroma of Mahua flowers with about 7 to 9% alcohol.Keywords: Madhuca indica, ethanol, reducing sugar, fermentation.African Journal of Biotechnology Vol. 12(39), pp. 5771-577

    Facile one-pot synthesis of amoxicillin-coated gold nanoparticles and their antimicrobial activity

    Get PDF
    Nanomaterials have been the object of intense study due to promising applications in a number of different disciplines. In particular, medicine and biology have seen the potential of these novel materials with their nanoscale properties for use in diverse areas such as imaging, sensing and drug vectorisation. Gold nanoparticles (GNPs) are considered a very useful platform to create a valid and efficient drug delivery/carrier system due to their facile and well-studied synthesis, easy surface functionalization and biocompatibility. In the present study, stable antibiotic conjugated GNPs were synthesised by a one-step reaction using a poorly water soluble antibiotic, amoxicillin. Amoxicillin, a member of the penicillin family, reduces the chloroauric acid to form nanoparticles and at the same time coats them to afford the functionalised nanomaterial. A range of techniques including UV-vis spectroscopy, dynamic light scattering (DLS), transmission electron microscopy (TEM) and thermogravimetric analysis (TGA) were used to ascertain the gold/drug molar ratio and the optimum temperature for synthesis of uniform monodisperse particles in the ca. 30-40 nm size range. Amoxicillin-conjugated gold showed an enhancement of antibacterial activity against Escherichia coli compared to the antibiotic alone

    Gauge fields in (A)dS within the unfolded approach: algebraic aspects

    Full text link
    It has recently been shown that generalized connections of the (A)dS space symmetry algebra provide an effective geometric and algebraic framework for all types of gauge fields in (A)dS, both for massless and partially-massless. The equations of motion are equipped with a nilpotent operator called σ\sigma_- whose cohomology groups correspond to the dynamically relevant quantities like differential gauge parameters, dynamical fields, gauge invariant field equations, Bianchi identities etc. In the paper the σ\sigma_--cohomology is computed for all gauge theories of this type and the field-theoretical interpretation is discussed. In the simplest cases the σ\sigma_--cohomology is equivalent to the ordinary Lie algebra cohomology.Comment: 59 pages, replaced with revised verio

    Smoking and Drinking Activates NF-κB /IL-6 Axis to Promote Inflammation During Cervical Carcinogenesis

    Get PDF
    Background: High-risk strains of HPV are known to cause cervical cancer. Multiple clinical studies have emphasized that smoking and drinking are critical risk factors for cervical cancer and its high-grade precursors. In this study, we investigated the molecular mechanisms involved in the interplay of smoking and/or drinking with HPV infectivity and defined a systematic therapeutic approach for their attenuation in cervical cancer. Methods: The impact of benzo[a]pyrene (B[a]P) and/or ethanol (EtOH) exposure on cervical cancer cells was assessed by measuring changes in cell proliferation, clonogenicity, biophysical properties, cell migration, and invasion. Expression of HPV16 E6/E7, NF-κB, cytokines, cell cycle, and inflammation mediators was determined using qRT-PCR, immunoblotting, ELISA, luciferase reporter assay and confocal microscopy. Results: The exposure of cervical cancer cells to B[a]P and/or EtOH altered the expression of HPV16 E6/E7 oncogenes and EMT markers; it also enhanced cellular clonogenicity, migration, and invasion. In addition, B[a]P and/or EtOH exposure promoted inflammation pathways through TNF-α and NF-κB signaling, leading to IL-6 upregulation and activation of VEGFA. These molecular effects caused by B[a]P and/or EtOH exposure were effectively attenuated by Cur/PLGA-Cur. Conclusion: These data suggest a molecular link between smoking, drinking, and HPV infectivity in cervical carcinogenesis. However, these events were determined to be attenuated by treatment with Cur/PLGA-Cur treatment, implying its role in cervical cancer prevention/treatment

    Back reaction effects on the dynamics of heavy probes in heavy quark cloud

    Get PDF
    We holographically study the effect of back reaction on the hydrodynamical properties of N=4\mathcal{N} = 4 strongly coupled super Yang-Mills (SYM) thermal plasma. The back reaction we consider arises from the presence of static heavy quarks uniformly distributed over N=4\mathcal{N} = 4 SYM plasma. In order to study the hydrodynamical properties, we use heavy quark as well as heavy quark-antiquark bound state as probes and compute the jet quenching parameter, screening length and binding energy. We also consider the rotational dynamics of heavy probe quark in the back-reacted plasma and analyse associated energy loss. We observe that the presence of back reaction enhances the energy-loss in the thermal plasma. Finally, we show that there is no effect of angular drag on the rotational motion of quark-antiquark bound state probing the back reacted thermal plasma.Comment: 29 pages, 21 figure

    Retrotransposon vectors for gene delivery in plants

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Retrotransposons are abundant components of plant genomes, and although some plant retrotransposons have been used as insertional mutagens, these mobile genetic elements have not been widely exploited for plant genome manipulation. In vertebrates and yeast, retrotransposons and retroviruses are routinely altered to carry additional genes that are copied into complementary (c)DNA through reverse transcription. Integration of cDNA results in gene delivery; recombination of cDNA with homologous chromosomal sequences can create targeted gene modifications. Plant retrotransposon-based vectors, therefore, may provide new opportunities for plant genome engineering.</p> <p>Results</p> <p>A retrotransposon vector system was developed for gene delivery in plants based on the Tnt1 element from <it>Nicotiana tabacum</it>. Mini-Tnt1 transfer vectors were constructed that lack coding sequences yet retain the 5' and 3' long terminal repeats (LTRs) and adjacent <it>cis </it>sequences required for reverse transcription. The internal coding region of Tnt1 was replaced with a neomycin phosphotransferase gene to monitor replication by reverse transcription. Two different mini-Tnt1 s were developed: one with the native 5' LTR and the other with a chimeric 5' LTR that had the first 233 bp replaced by the CaMV 35 S promoter. After transfer into tobacco protoplasts, both vectors undergo retrotransposition using GAG and POL proteins provided in <it>trans </it>by endogenous Tnt1 elements. The transposition frequencies of mini-Tnt1 vectors are comparable with native Tnt1 elements, and like the native elements, insertion sites are within or near coding sequences. In this paper, we provide evidence that template switching occurs during mini-Tnt1 reverse transcription, indicating that multiple copies of Tnt1 mRNA are packaged into virus-like particles.</p> <p>Conclusions</p> <p>Our data demonstrate that mini-Tnt1 vectors can replicate efficiently in tobacco cells using GAG and POL proteins provided in <it>trans </it>by native Tnt1 elements. This suggests that helper Tnt1 constructs can be developed to enable a Tnt1-based two-component vector system that could be used in other plant species. Such a vector system may prove useful for gene delivery or the production of cDNA that can serve as a donor molecule for gene modification through homologous recombination.</p

    Proteomic Comparison of Entamoeba histolytica and Entamoeba dispar and the Role of E. histolytica Alcohol Dehydrogenase 3 in Virulence

    Get PDF
    The protozoan intestinal parasite Entamoeba histolytica infects millions of people worldwide and is capable of causing amebic dysentery and amebic liver abscess. The closely related species Entamoeba dispar colonizes many more individuals, but this organism does not induce disease. To identify molecular differences between these two organisms that may account for their differential ability to cause disease in humans, we used two-dimensional gel-based (DIGE) proteomic analysis to compare whole cell lysates of E. histolytica and E. dispar. We observed 141 spots expressed at a substantially (>5-fold) higher level in E. histolytica HM-1∶IMSS than E. dispar and 189 spots showing the opposite pattern. Strikingly, 3 of 4 proteins consistently identified as different at a greater than 5-fold level between E. histolytica HM-1∶IMSS and E. dispar were identical to proteins recently identified as differentially expressed between E. histolytica HM-1∶IMSS and the reduced virulence strain E. histolytica Rahman. One of these was E. histolytica alcohol dehydrogenase 3 (EhADH3). We found that E. histolytica possesses a higher level of NADP-dependent alcohol dehydrogenase activity than E. dispar and that some EhADH3 can be localized to the surface of E. histolytica. Episomal overexpression of EhADH3 in E. histolytica trophozoites resulted in only subtle phenotypic differences in E. histolytica virulence in animal models of amebic colitis and amebic liver abscess, making it difficult to directly link EhADH3 levels to virulence differences between E. histolytica and less-pathogenic Entamoeba
    corecore