30 research outputs found

    Blood cultures in ambulatory outpatients

    Get PDF
    BACKGROUND: Blood cultures are a gold standard specific test for diagnosing many infections. However, the low yield may limit their usefulness, particularly in low-risk populations. This study was conducted to assess the utility of blood cultures drawn from ambulatory outpatients. METHODS: Blood cultures drawn at community-based collection sites in the Calgary Health Region (population 1 million) in 2001 and 2002 were included in this study. These patients were analyzed by linkages to acute care health care databases for utilization of acute care facilities within 2 weeks of blood culture draw. RESULTS: 3102 sets of cultures were drawn from 1732 ambulatory outpatients (annual rate = 89.4 per 100,000 population). Significant isolates were identified from 73 (2.4%) sets of cultures from 51 patients, including Escherichia coli in 18 (35%) and seven (14%) each of Staphylococcus aureus and Streptococcus pneumoniae. Compared to patients with negative cultures, those with positive cultures were older (mean 49.6 vs. 40.1 years, p < 0.01), and more likely to subsequently receive care at a regional emergency department, outpatient antibiotic clinic, or hospital (35/51 vs. 296/1681, p < 0.0001). Of the 331 (19%) patients who received acute care treatment, those with positive cultures presented sooner after community culture draw (median 2 vs. 3 days, p < 0.01) and had longer median treatment duration (6 vs. 2 days, p < 0.01). CONCLUSION: Blood cultures drawn in outpatient settings are uncommonly positive, but may define patients for increased intensity of therapy. Strategies to reduce utilization without excluding patients with positive cultures need to be developed for this patient population

    Bioavailability of Orally Administered rhGM-CSF: A Single-Dose, Randomized, Open-Label, Two-Period Crossover Trial

    Get PDF
    BACKGROUND: Recombinant human granulocyte-macrophage colony-stimulating factor (rhGM-CSF) is usually administered by injection, and its oral administration in a clinical setting has been not yet reported. Here we demonstrate the bioavailability of orally administered rhGM-CSF in healthy volunteers. The rhGM-CSF was expressed in Bombyx mori expression system (BmrhGM-CSF). METHODS AND FINDINGS: Using a single-dose, randomized, open-label, two-period crossover clinical trial design, 19 healthy volunteers were orally administered with BmrhGM-CSF (8 microg/kg) and subcutaneously injected with rhGM-CSF (3.75 microg/kg) respectively. Serum samples were drawn at 0.0h, 0.5h ,0.75h,1.0h,1.5h,2.0h ,3.0h,4.0h,5.0h,6.0h,8.0h,10.0h and 12.0h after administrations. The hGM-CSF serum concentrations were determined by ELISA. The AUC was calculated using the trapezoid method. The relative bioavailability of BmrhGM-CSF was determined according to the AUC ratio of both orally administered and subcutaneously injected rhGM-CSF. Three volunteers were randomly selected from 15 orally administrated subjects with ELISA detectable values. Their serum samples at the 0.0h, 1.0h, 2.0h, 3.0h and 4.0h after the administrations were analyzed by Q-Trap MS/MS TOF. The different peaks were revealed by the spectrogram profile comparison of the 1.0h, 2.0h, 3.0h and 4.0h samples with that of the 0.0h sample, and further analyzed using both Enhanced Product Ion (EPI) scanning and Peptide Mass Fingerprinting Analysis. The rhGM-CSF was detected in the serum samples from 15 of 19 volunteers administrated with BmrhGM-CSF. Its bioavailability was observed at an average of 1.0%, with the highest of 3.1%. The rhGM-CSF peptide sequences in the serum samples were detected by MS analysis, and their sizes ranging from 2,039 to 7,336 Da. CONCLUSIONS: The results demonstrated that the oral administered BmrhGM-CSF was absorbed into the blood. This study provides an approach for an oral administration of rhGM-CSF protein in clinical settings. TRIAL REGISTRATION: www.chictr.orgChiCTR-TRC-00000107

    Genome-wide association study of primary sclerosing cholangitis identifies new risk loci and quantifies the genetic relationship with inflammatory bowel disease

    Get PDF
    Primary sclerosing cholangitis (PSC) is a rare progressive disorder leading to bile duct destruction; ∼75% of patients have comorbid inflammatory bowel disease (IBD). We undertook the largest genome-wide association study of PSC (4,796 cases and 19,955 population controls) and identified four new genome-wide significant loci. The most associated SNP at one locus affects splicing and expression of UBASH3A, with the protective allele (C) predicted to cause nonstop-mediated mRNA decay and lower expression of UBASH3A. Further analyses based on common variants suggested that the genome-wide genetic correlation (rG) between PSC and ulcerative colitis (UC) (rG = 0.29) was significantly greater than that between PSC and Crohn's disease (CD) (rG = 0.04) (P = 2.55 × 10-15). UC and CD were genetically more similar to each other (rG = 0.56) than either was to PSC (P < 1.0 × 10-15). Our study represents a substantial advance in understanding of the genetics of PSC

    Edible bio-based nanostructures: delivery, absorption and potential toxicity

    Get PDF
    The development of bio-based nanostructures as nanocarriers of bioactive compounds to specific body sites has been presented as a hot topic in food, pharmaceutical and nanotechnology fields. Food and pharmaceutical industries seek to explore the huge potential of these nanostructures, once they can be entirely composed of biocompatible and non-toxic materials. At the same time, they allow the incorporation of lipophilic and hydrophilic bioactive compounds protecting them against degradation, maintaining its active and functional performance. Nevertheless, the physicochemical properties of such structures (e.g., size and charge) could change significantly their behavior in the gastrointestinal (GI) tract. The main challenges in the development of these nanostructures are the proper characterization and understanding of the processes occurring at their surface, when in contact with living systems. This is crucial to understand their delivery and absorption behavior as well as to recognize potential toxicological effects. This review will provide an insight into the recent innovations and challenges in the field of delivery via GI tract using bio-based nanostructures. Also, an overview of the approaches followed to ensure an effective deliver (e.g., avoiding physiological barriers) and to enhance stability and absorptive intestinal uptake of bioactive compounds will be provided. Information about nanostructures potential toxicity and a concise description of the in vitro and in vivo toxicity studies will also be given.Joana T. Martins, Oscar L. Ramos, Ana C. Pinheiro, Ana I. Bourbon, Helder D. Silva and Miguel A. Cerqueira (SFRH/BPD/89992/2012, SFRH/BPD/80766/2011, SFRH/BPD/101181/2014, SFRH/BD/73178/2010, SFRH/BD/81288/2011, and SFRH/BPD/72753/2010, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE, Portugal). The authors thank the FCT Strategic Project PEst-OE/EQB/LA0023/2013 and the project "BioInd-Biotechnology and Bioengineering for improved Industrial and Agro-Food processes," REF.NORTE-07-0124-FEDER-000028, co-funded by the Programa Operacional Regional do Norte (ON.2-O Novo Norte), QREN, FEDER. We also thank to the European Commission: BIOCAPS (316265, FP7/REGPOT-2012-2013.1) and Xunta de Galicia: Agrupamento INBIOMED (2012/273) and Grupo con potencial de crecimiento. The support of EU Cost Action FA1001 is gratefully acknowledged

    DNA damage by lipid peroxidation products: implications in cancer, inflammation and autoimmunity

    Get PDF
    Oxidative stress and lipid peroxidation (LPO) induced by inflammation, excess metal storage and excess caloric intake cause generalized DNA damage, producing genotoxic and mutagenic effects. The consequent deregulation of cell homeostasis is implicated in the pathogenesis of a number of malignancies and degenerative diseases. Reactive aldehydes produced by LPO, such as malondialdehyde, acrolein, crotonaldehyde and 4-hydroxy-2-nonenal, react with DNA bases, generating promutagenic exocyclic DNA adducts, which likely contribute to the mutagenic and carcinogenic effects associated with oxidative stress-induced LPO. However, reactive aldehydes, when added to tumor cells, can exert an anticancerous effect. They act, analogously to other chemotherapeutic drugs, by forming DNA adducts and, in this way, they drive the tumor cells toward apoptosis. The aldehyde-DNA adducts, which can be observed during inflammation, play an important role by inducing epigenetic changes which, in turn, can modulate the inflammatory process. The pathogenic role of the adducts formed by the products of LPO with biological macromolecules in the breaking of immunological tolerance to self antigens and in the development of autoimmunity has been supported by a wealth of evidence. The instrumental role of the adducts of reactive LPO products with self protein antigens in the sensitization of autoreactive cells to the respective unmodified proteins and in the intermolecular spreading of the autoimmune responses to aldehyde-modified and native DNA is well documented. In contrast, further investigation is required in order to establish whether the formation of adducts of LPO products with DNA might incite substantial immune responsivity and might be instrumental for the spreading of the immunological responses from aldehyde-modified DNA to native DNA and similarly modified, unmodified and/or structurally analogous self protein antigens, thus leading to autoimmunity

    Vitamin B₁₂ as a carrier for targeted platinum delivery: in vitro cytotoxicity and mechanistic studies

    Full text link
    It is attractive to use vitamin B₁₂ as a carrier for targeted delivery of cytotoxic agents such as platinum complexes owing to the high demand for vitamin B₁₂ by fast proliferating cells. The basic {B₁₂-CN-Pt(II)} conjugates are recognized by intracellular enzymes and converted to coenzyme B₁₂ in an enzymatic adenosylation assay. The reductive adenosylation of {B₁₂-CN-Pt(II)} conjugates leads to the release of the Pt(II) complexes; thus, {B₁₂-CN-Pt(II)} conjugates can be considered as prodrugs. It is important not only to elucidate the activity of the cisplatin-B₁₂ conjugates, but also to understand the mode of action on a molecular level. Chemical reduction of {B₁₂-CN-Pt(II)} conjugates with cobaltocene yielded cob(II)alamin and induced release of the corresponding Pt(II) species. Kurnakov tests and coordination of 2'-deoxyguanosine or GMP to the released Pt(II) complexes allowed isolation and characterization of Pt(II) complexes as released during enzymatic adenosylation. The biological activity of these Pt(II) complexes was evaluated. Since the cleaved Pt(II) complexes show cytotoxicity, the {B₁₂-CN-Pt(II)} conjugates can be used for specific targeting of cancer cells and therapeutic drug delivery. Preliminary in vitro cytotoxicity studies indicated lower activity (IC(50) between 8 and 88 μM) than found for pure cisplatin. Since active transport and receptor-mediated uptake limits the intracellular {B₁₂-CN-Pt(II)} concentration, comparison with pure cisplatin is of limited use. We could show that the Pt(II) complexes cleaved from B₁₂ exerted a cytotoxicity comparable to that of cisplatin itself. Cytotoxicity studies in vitamin B₁₂ free media showed a dependence on the addition of transcobalamin II for B₁₂-Pt(II) conjugates
    corecore