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INTRODUCTORY PARAGRAPH

Primary sclerosing cholangitis (PSC) is a rare progressive disorder leading to bile duct 

destruction. We undertook the largest genome-wide association study of PSC (4,796 cases 

and 19,955 population controls) and identified four novel genome-wide significant loci. The 
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most associated SNP at one locus affects splicing and expression of UBASH3A, with the 

protective allele (C) predicted to cause non-stop mediated mRNA decay and lower 

expression of UBASH3A. Although 75% of PSC patients have comorbid inflammatory 

bowel disease (IBD), our data suggest that the genome-wide genetic correlation (rG) 

between PSC and ulcerative colitis (UC) (rG=0.29) is significantly greater than that between 

PSC and Crohn’s disease (CD) (rG=0.04) (P=2.55×10−15). Importantly, UC and CD are 

genetically more similar to each other (rG=0.56) than either is to PSC (P<1.0×10−15). Our 

study represents a significant advance in our understanding of the genetics of PSC.

Primary sclerosing cholangitis affects around 1 in 10,000 individuals of European ancestry 

and is characterised by chronic inflammation and stricturing fibrosis of the biliary tree1. 

There remains no effective medical therapy and the majority of patients require orthotopic 

liver transplantation owing to the progressive nature of the disease2. PSC is highly comorbid 

with IBD, which is ultimately diagnosed in around 75% of patients. The clinical presentation 

of IBD in PSC is most often consistent with UC (~80%), but CD (~15%) and indeterminate 

forms of IBD (~5%) do occur in some patients. Time of disease onset and expression of the 

IBD phenotype in PSC is variable, with an overall trend toward IBD preceding PSC and 

milder but more extensive intestinal inflammation (pancolitis) compared to classical UC or 

CD3,4 This tendency, along with other clinical and epidemiological differences, has led to 

the proposal that IBD in the context of PSC (PSC-IBD) should be considered a disease 

entity separate from both UC and CD. Elevated risk of PSC and UC in first-degree relatives 

of PSC patients indicates a strong genetic component to PSC susceptibility and suggests the 

presence of shared genetic risk factors between PSC and UC5,6. However, the genetic 

relationship between PSC and UC/CD/IBD remains poorly defined because the low 

prevalence of PSC has precluded familial studies. Large-scale association studies have 

identified sixteen loci, including the HLA locus, underlying PSC risk7–12. Here, we 

undertake the largest genome-wide association study of PSC to date to identify novel PSC 

risk loci and enable us, for the first time, to estimate the genome-wide genetic correlation 

between PSC and the common forms of IBD.

Following quality control (Supplementary Tables 1 and 2, Supplementary Figs. 1–3) and 

imputation using reference haplotypes from the 1000 Genomes (Phase III) and UK10K 

projects13,14, we tested 7,891,602 SNPs for association in a sample of 2,871 PSC cases and 

12,019 population controls using a linear mixed model to account for population 

stratification (Online Methods, Supplementary Tables 1 and 2). Genome-wide summary 

statistics are available from the International PSC Study Group website (see URLs). Forty 

SNPs were tested for association in an independent cohort of 1,925 PSC cases and 7,936 

population controls (Online Methods, Supplementary Table 3), including 24 SNPs with P < 

5×10−6 in the GWAS that are located outside of known PSC loci. We used an inverse-

variance weighted fixed effects meta-analysis, implemented in METAL15, to test the 

evidence of association across the GWAS and replication cohorts combined and identified 

four new genome-wide significant loci with P < 5.26 × 10−3 in the replication study and P < 

5 × 10−8 in the combined meta-analysis (Table 1, Supplementary Table 4, Supplementary 

Fig. 4). One of the newly associated loci, tagged by rs80060485 (3:g.71153890T>C) in 

FOXP1, is associated with immune-mediated disease for the first time. The three other 

newly associated PSC loci (implicating CCDC88B, CLEC16A and UBASH3A) are in high 
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linkage disequilibrium (LD), defined as (r2 > 0.8) with variants significantly associated to 

other immune-mediated diseases (Supplementary Table 5). We found consistent evidence of 

association at fifteen of the sixteen previously established PSC loci and now consider 19 

regions of the genome to be associated with PSC risk (Supplementary Table 4, 

Supplementary Fig. 4).

All SNPs in high LD (r2 > 0.8) with the most associated SNP at each PSC locus were 

evaluated for potential function using SIFT16 and PolyPhen 217, the Genome Wide 

Annotation of Variants (GWAVA) online tool18, and a number of eQTL databases (Online 

Methods, Supplementary Tables 6–8). One of the new PSC risk variants (rs1893592, 21:g.

43855067A>C) is the most strongly associated eQTL of UBASH3A, a gene involved in 

regulation of T-cell signalling, in two whole blood-based analyses19,20 and a B-cell only 

study21. The SNP is located three bases downstream of the 10th exon of UBASH3A, within 

the splice consensus sequence, and was reported as a splice-QTL in a recent RNA 

sequencing study19. The C allele, which is associated with reduced risk of PSC and has a 

frequency of 27.8% in our controls, disrupts the conserved 5′ splice donor sequence at this 

position in vertebrate introns, which is typically A (71% of sites) or G (24% of sites)22. The 

predicted consequence of this change is partial retention of the downstream intron possibly 

leading to non-stop mediated decay. Reanalysis of the gEUVADIS RNA-seq data23 revealed 

that this SNP was the most strongly associated with increased intron expression (P = 

2×10−16, Supplementary Figure 5), with the PSC protective allele causing intron 10 to be 

retained in the UBASH3A mRNA. Further work is required to determine whether carrying 

the C allele at this SNP decreases UBASH3A protein levels and if this is the causal 

mechanism behind the reduced risk of PSC, celiac disease and rheumatoid arthritis 

(Supplementary Table 5). In addition, another variant within the UBASH3A gene 

(rs11203203, 21:g.43836186G>A) that is in low-LD (r2 = 0.12) with rs1893592 has been 

associated with vitiligo24 and type-1 diabetes25, further supporting the role of UBASH3A in 

immune-mediated disorders. We were unable to identify any current drugs targeting 

UBASH3A (Supplementary note).

To enable us to address the genetic relationship between PSC and IBD we obtained 

association summary statistics from the International IBD Genetics Consortium for 20,550 

CD cases, 17,647 UC cases and 48,485 controls of European ancestry26. Across each of the 

eighteen non-HLA PSC risk loci we used a Bayesian test of colocalisation27 to identify loci 

with strong evidence (posterior probability > 0.8) of either shared or independent causal 

variants between pairs of traits (Online Methods, Supplementary Table 9). Four of the 

eighteen PSC risk loci have not been associated at genome-wide significance with IBD 

(BCL2L11, FOXP1, SIK2 and UBASH3A) although the lead SNPs at two of these loci 

(rs72837826 – BCL2L11 and rs1893592 – UBASH3A) did demonstrate strong evidence for 

colocalisation (posterior probability > 0.8) and suggestive evidence of association (P < 10−4) 

in the UC cohort (Supplementary Table 9, 10). Of the fourteen PSC loci that had been 

previously associated with IBD (UC, CD or both), four demonstrated strong evidence that 

the causal variant is independent from that in UC and CD (IL2RA, CCDC88B, CLEC16A 
and PRKD2), a finding supported by the low linkage disequilibrium (r2 < 0.2) between the 

lead SNPs in PSC and UC/CD at these loci (Supplementary Tables 9 and 10). Thus, even for 

highly comorbid diseases, significant association to the same region of the genome will not 
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always be driven by a shared causal variant. This supports similar observations for other 

related phenotypes such as psoriasis versus psoriatic arthritis28,29. Six of the fourteen loci 

associated with PSC and IBD displayed strong evidence of a shared causal variant with UC, 

CD or both (MST1, IL21, HDAC7, SH2B3, CD226 and PSMG1) (Figure 1, Supplementary 

Tables 9 and 10). We further tested these six SNPs for evidence of heterogeneity of effect 

using Cochran’s Q test (Online Methods). Four showed significantly increased effect size in 

PSC relative to both UC and CD (MST1, IL21, SH2B3 and CD226) (P < 2.78×10−3) with an 

additional locus (PSMG1) showing significantly increased effect size relative to CD only 

(Figure 1). Simulation studies showed that the observed heterogeneity of effect is unlikely to 

be driven by the large difference in sample size between the PSC and UC cohorts (Pempirical 

< 3.00×10−4 at all four SNPs) (Supplementary Note). We did not detect evidence of 

heterogeneity of effect between PSC patients expressing different IBD phenotypes (PSC-

UC, PSC-CD or PSC-NoIBD) (Supplementary Fig. 6). However, our power to detect 

significant heterogeneity of effect between these PSC subphenotypes was limited by sample 

size (Supplementary Table 11).

While the much larger size of the UC and CD cohorts gives us power to investigate the 

effects of PSC risk SNPs in IBD, the PSC cohort is underpowered to do the reverse. Thus, to 

clarify the pairwise genetic correlation between PSC, UC and CD we obtained genome-wide 

individual level genotype data from the International IBD Genetics Consortium for 6,247 

CD cases, 6,686 UC cases and 34,393 population controls of European descent26 and used 

GCTA to estimate genome-wide genetic correlations (rG) using a bivariate linear mixed 

model30,31 (Online Methods, Supplementary Note). This analysis quantified the SNP-

heritability (h2
SNP) of PSC as 0.148 (95% CI: 0.135–0.161), and showed that in the context 

of common genetic variation, PSC is significantly more related to UC (rG = 0.29) than CD 

(rG = 0.04) (P = 2.55×10−15) (Figure 2), consistent with the clinical phenotype most often 

observed in PSC-IBD patients. Moreover, the genetic correlation between UC and CD (rG = 

0.56) is significantly greater than that between PSC and either UC or CD (P < 1.0×10−15). 

Due to a lack of data regarding the PSC status of individuals in the UC and CD cohorts we 

could not remove the approximately 5% of patients we would expect to have comorbid PSC. 

This suggests that, while our estimates of the genome-wide genetic correlation between PSC 

and both UC and CD may seem surprisingly low, these are likely slight overestimates of the 

true genetic correlation between the diseases. We validated the GCTA co-heritability 

estimates using a summary statistics-based genetic correlation analysis (LD score 

regression32), and found support for the reported genetic relationships (i.e. rGCD.vs.UC = 

0.68 > rGPSC.vs.UC = 0.39 > rGPSC.vs.CD = 0.09) (Supplementary Figure 7). The low 

genome-wide genetic correlation between PSC and the IBDs is also supported by known 

differences in HLA risk alleles11,33 and our discovery that PSC has both independent causal 

variants and shared causal variants of heterogeneous effect size compared to both UC and 

CD. The analyses presented in this study, based on common genetic variants (MAF > 1%), 

suggest functional studies in both the biliary tree and intestinal tract are required if we are to 

understand the biological consequences of PSC associated genetic variants, whether or not 

they are shared with IBD.

While it is clear that a substantial component of the genetic architecture of PSC is not shared 

with either CD or UC, our data also show that shared genetic risk factors do certainly exist 
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and likely play some role in disease comorbidity. However, under a purely additive genetic 

liability threshold model, the genetic covariance between the two diseases would need to be 

greater than 0.76 to fully explain the fact that 60% of PSC cases have comorbid UC 

(Supplementary Figure 8). In contrast, the observed genetic correlation (rG = 0.29) would 

generate a PSC-UC comorbidity rate of only 1.6% under this model. This demonstrates that 

the observed extent of comorbidity between PSC and UC is not fully explained by shared 

additive genetic effects of common variants and that other factors must play a role, such as 

shared environmental effects or shared rare variants not captured by our GWAS and 

imputation data.

In summary, we have performed the largest genome-wide association study of PSC to date 

and identified four new PSC risk loci. We now consider 23 regions of the genome to be 

associated with disease risk, including four loci only recently associated with PSC in a 

cross-disease meta-analysis34. One of our new associations suggests that decreased 

UBASH3A is associated with a lower risk of PSC through a common NMD variant. We 

have also shown that, even for highly comorbid phenotypes such as PSC and IBD, 

significant association to the same region of the genome will not always be driven by a 

common causal variant. Furthermore, by conducting genome-wide comparisons with CD 

and UC we have, for the first time, shown that the comorbid gastrointestinal inflammation 

seen in the majority of PSC patients cannot be fully explained by shared genetic risk. Thus, 

the biliary and intestinal inflammation seen specifically in PSC should be studied to advance 

our understanding of the disease and improve clinical outcome for patients with this 

devastating disorder.

Online Methods

Ethical Approval

The ethics committees or institutional review boards of all participating centers approved the 

studies and the recruitment of participants. Written informed consent was obtained from all 

participants.

GWAS cohort

Cohorts and genotyping—731 PSC cases and 3,202 population controls from 

Scandinavia and Germany were ascertained and genotyped using the Affymetrix Genome-

Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA, USA) at three different centers7. 

A cohort of 1,227 UK PSC cases was recruited from across more than 150 UK National 

Health Service Trusts or Health Boards, including all transplant centers in the UK, by the 

UK-PSC consortium. A cohort of 904 US PSC patients were enrolled in the PSC Resource 

of Genetic Risk, Environment and Synergy Studies (PROGRESS), a multicenter 

collaboration between eight academic research institutions across the US and Canada. 

PROGRESS ascertained additional DNA samples from established PSC cohorts from 

Canada (N=259) and Poland (N=43). The UK and US GWAS cohorts were genotyped using 

the Illumina HumanOmni2.5-8 BeadChip (Illumina, San Diego, CA, USA) and called using 

the GenCall algorithm implemented in GenomeStudio. UK samples were genotyped at the 

Wellcome Trust Sanger Institute (Hinxton, UK) and the US samples at the Mayo Clinic 
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Medical Genome Facility (Rochester, MN, USA). A diagnosis of PSC was based on 

standard clinical, biochemical, cholangiographic and histological criteria35, with exclusion 

of secondary causes of sclerosing cholangitis. Commonly accepted clinical, radiological, 

endoscopic and histological criteria were also used for diagnosis and classification of IBD36. 

Genetic data from 12,595 individuals genotyped on the Illumina HumanOmni2.5-4v1 array 

(Omni2.5-4) as part of The University of Michigan Health Retirement Study were 

downloaded from the Database of Genotypes and Phenotypes (dbGaP37). Genotyping was 

performed at the Center for Inherited Disease Research (CIDR) and genotypes called using 

GenomeStudio version 2011.e, (see the HRS website for more details).

Quality control—All SNPs were aligned to NCBI build 37 (hg19). Genotype data were 

quality controlled independently across 6 batches defined by genotyping centre (AffySF: N = 

2,205, AffyHZ: N = 1,256; AffyAB: N = 472; IlluminaWTSI: N= 1,227;IlluminaMAYO: N= 

1,206; IlluminaCIDR: N = 12,595). Initially, SNPs out of Hardy-Weinberg equilibrium 

(HWE: P < 1×10−6) in controls (excluding those in the HLA region) or with a call rate less 

than 80% were removed. SNPs failing in at least one batch were removed from all cohorts 

genotyped using the same chip. For sample QC, individuals whose sex determined using the 

X chromosome homozygosity rate (F) and Y chromosome call rate differed from that in our 

patient database (or could not be genetically determined, F or Y-chromosome call rate 

between 0.3–0.7) were removed. Next, Abberant38 was used to identify samples with 

outlying heterozygosity or genotype call rate. Samples with a call rate less than 90% for an 

individual chromosome were also removed. A set of 82,085 independent SNPs (pairwise r2 

<0.2) genotyped on all arrays was identified for the purpose of estimating sample relatedness 

and ancestry, excluding SNPs that a) were within regions of high linkage disequilibrium, b) 

had a MAF < 10% or c) were A/T or C/G SNPs. Pairwise identity by descent was estimated 

for all individuals in the study using PLINK, and the sample with the lowest genotype call 

rate was removed for all pairs with IBD > 0.9. Both samples were excluded if case/control 

status was discordant between duplicates. To maximize power to detect association, related 

samples (0.1875 < IBD < 0.9) were retained and a mixed model used for association testing. 

Sample ancestry was inferred via principal components analysis implemented in 

EIGENSTRAT39. Population principal components were calculated using genotype data 

from the CEU, YRI and CHB/JPT samples from the 1000 Genomes Project. Factor loadings 

from these principal components were then used to project these principal components for 

our cases and controls. Samples of non-European ancestry were identified using Aberrant38. 

The number of samples failing each QC step is shown in Supplementary Table 1. In total, 

2,871 cases and 12,019 controls passed sample QC. Next, a more thorough marker QC was 

conducted within batches by excluding, genotyping platform-wide, SNPs with a) different 

probe sequences on the Omni2.5-4 and Omni2.5-8 array, b) a call rate < 98%, c) MAF<1%, 

d) significant evidence of deviation from HWE (P < 1×10−5) in controls and e) a significant 

difference in call rate between cases and controls (P < 1×10−5), in at least one of the 

genotyping batches. Outside of the HLA region, markers only present on one of the two 

Illumina arrays were also removed. After SNP QC, 1,207,121 Omni2.5-4 SNPs, 1,215,097 

Omni2.5-8 SNPs and 528,496 Affymetrix 6 SNPs were available.
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Genotype Imputation—Only 322,807 SNPs feature on both the Affy6 and Omni2.5 

arrays so the samples genotyped on these arrays were phased and imputed separately. For 

computational efficiency, the genome was split into 3Mbp batches and those spanning the 

centromere were split and joined to the last complete batch either side of the centromere. 

Batches of less than 200 SNPs were merged with an adjacent batch. Pre-phasing was 

performed using the SHAPEIT2 algorithm40 and imputation using IMPUTE241. We used a 

combined reference panel of the 1000 Genomes Phase 1 integrated version 3 and the 

UK10K cohort, consisting of 4,873 individuals and 42,359,694 SNPs (k_hap=2,000, 

Ne=20,000). Post-imputation, SNPs with a posterior probability less than 0.9 or info score 

less than 0.5 were removed. The QC steps outlined above for directly genotyped SNPs were 

applied to the imputed genotype data. SNPs with r2 < 0.8 between directly genotyped and 

imputed genotypes were removed and phasing and imputation repeated. Following QC (as 

outlined above), a total of 7,891,602 SNPs available for association testing across 2,871 PSC 

cases and 12,019 population controls (Supplementary Table 2).

Association Analysis—A linear mixed model implemented in the MMM software42 was 

used to test association between genetic variants and case/control status. To reduce compute 

time the relationship matrix was constructed using the 82,085 quasi-independent SNPs 

previously used in the PCA. To prevent the association analyses being biased by informed 

missingness across our genotyping batches, linear mixed model association tests were 

conducted across three different batches of directly-genotyped and imputed SNPs, defined 

on their availability for only the Omni2.5 genotyped samples (N = 2,015,514), only the 

Affy6 genotyped samples (N = 114,935), or across all genotyped samples (N = 5,761,153).

Stepwise conditional regression analysis (excluding the extended MHC region) was 

undertaken in MMM to identify independent association signals (P < 5.0 × 10−6) within PSC 

associated loci. The previously reported lead SNP within each of the 15 known PSC loci was 

selected for replication, though we also took forward the most associated SNP in our study if 

it was a poor tag (r2 < 0.8) of previously reported SNP. In addition, 24 SNPs outside of 

established PSC risk loci with P < 5 ×10−6 were also included in the replication experiment. 

All cluster plots were manually inspected prior to SNP selection.

Validation and replication cohorts

Cohorts and genotyping—An independent replication cohort of 2,011 PSC cases from 

Europe and North America was ascertained following the diagnostic criteria outlined above. 

A total of 8,784 population controls of European descent were ascertained, including 515 

from the Mayo Clinic Biobank43 and 1000 from the INTERVAL study44. British and 

Canadian samples were genotyped at the Wellcome Trust Sanger Institute in Cambridge, UK 

(N = 2,366) and all other samples at the Institute of Clinical Molecular Biology in Kiel, 

Germany (N = 11,152) using the same Agena Biosciences iPLEX design. To reduce the risk 

of false-positive associations being driven by imputation errors we undertook a substantial 

validation experiment, genotyping the 40 SNPs in our replication experiment across 2,723 

cases in the GWAS study.
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Quality control—Two SNPs yielded poor genotype clusters and were removed from 

further study. Four SNPs with a call rate less than 95% or Hardy Weinberg equilibrium P < 

1.25 × 10−3 (Bonferroni correction for 40 SNPs) within controls were excluded 

(Supplementary Table 12). Samples with a call rate less than 92%, or where the genetically 

determined sex differed from that in our patient database, were removed. The sample with 

the lowest call rate in duplicate pairs was removed from duplicate pairs (IBS > 0.9) 

(Supplementary Table 3). Post-QC, one SNP had an r2 less than 0.90 between the discovery 

and validation genotyping and, following manual inspection of cluster plots, was removed 

from the replication study.

Replication and Combined association analyses—For the replication analysis, 

logistic regression tests of association were performed separately for samples from six 

geographic regions (Supplementary Table 3) using SNPTEST v2 (Marchini et al., 2007). 

Inverse-variance weighted fixed effects meta-analyses implemented in METAL16 were then 

used to a) test for association across all replication samples and b) test the evidence of 

association across the GWAS and replication cohorts combined. To classify a region as 

newly associated with PSC we required both significant evidence of association in the 

replication cohort (P < 5.26 × 10−3, Bonferroni correction for 19 one-tailed tests) and 

genome-wide significance (P < 5 × 10−8) in the combined meta-analysis.

Candidate gene prioritization

Functional annotation—All SNPs in high LD (r2 > 0.8) with lead SNPs at PSC 

associated loci were annotated for potential function using the Genome Wide Annotation of 

Variants (GWAVA) online tool19. In addition, all coding SNPs from this set were also 

annotated using SIFT16 and PolyPhen218.

Pathway analysis—To quantify the functional relationship between genes within PSC 

risk loci, we conducted a GRAIL pathway analysis. GRAIL evaluates the degree of 

functional connectivity between genes based on the extent they co-feature in published 

abstracts (we used all PubMed abstracts prior to 2006 to avoid biasing our analysis due to 

results from large-scale GWASs). All PSC associated loci were included in the analysis and 

only genes with GRAIL P < 0.05 and edges with a score of > 0.5 were included in the 

connectivity map.

Expression quantitative trait loci (eQTL)—eQTL analysis focused on published cis-

eQTLs due to the lower reproducibility caused by smaller effect sizes and context-specificity 

of trans-eQTL45. Eight eQTL datsets were included in the analysis: eQTL data from 12 

studies collated in the Chicago eQTL browser, eQTL results from 1,421 samples of 13 

different tissue types by the genotype-tissue expression (GTEx) project46, 462 

lymphoblastoid cell lines24, 922 whole blood samples20, 8,086 whole blood samples21, 

purified B cells and monocytes from 283 individuals22, activated monocytes from 432 

individuals47, and activated monocyte-derived dendritic cells from diverse populations48. 

The most significant variant-gene associations were extracted from each eQTL dataset and 

were reported as overlapping if that variant was in high LD (r2 > 0.8) with any of the lead 

SNPs in the PSC GWAS meta-analysis.
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Modelling PSC and IBD genetic risk

Association summary statistics from the European arm of the latest International IBD 

Genetics Consortium study27 were downloaded. Where available we used results from their 

combined GWAS plus Immunochip follow-up study and otherwise used those from the 

GWAS analysis. Definition of the 231 significantly associated loci as CD, UC or both (IBD) 

was taken from Liu and van Sommeren et al27. Due to the limited availability of relevant 

subphenotype data within the IIBDGC data, we were unable to identify the 3–5% of IBD 

cases that we expect to have PSC. Including these individuals as IBD cases in our 

comparisons lowers our power to detect differences between the two diseases.

Causal variant co-localisation analysis—To identify causal variants within disease 

associated loci that are shared between diseases we used a summary statistic based Bayesian 

test of colocalisation (COLOC), implemented in R28. Briefly, COLOC generates posterior 

probabilities for five different hypotheses: 1) no association to either disease, 2) association 

to disease 1 but not disease 2, 3) association to disease 2 but not disease 1, 4) association to 

both disease 1 and 2 but independent causal variants and 5) association to both disease 1 and 

2 with a common causal variant. Only SNPs present in all the cohorts (PSC, CD, UC and 

IBD) were included in the analysis and associated regions were defined as 1MB regions with 

the most associated SNP at the centre. Within each region we calculated the r2 between the 

PSC lead SNP and the SNP most associated with each of the other three diseases. Default 

priors were used for the probability of a SNP being a) associated to an individual disease 

(1×10−4) and b) causally associated to both diseases (1×10−5). This prior probability of 

colocalisation is more conservative in declaring distinct causal variants compared to a recent 

colocalisation analysis across six immune-mediated disorders49.

Heterogeneity of effects analysis—A formal heterogeneity of odds test was performed 

between PSC and IBD using the Cochran’s Q test implemented in METAL16 for all 18 PSC 

risk loci. The odds ratios and standard errors were obtained from our current PSC GWAS 

and the IIBDGC analysis27. A locus was declared to have significant heterogeneity of effects 

based on a threshold of P = 2.78×10−3 to account for multiple testing (Bonferroni correction 

applied to 5% significance threshold, N=18 tests). In order to test whether the significant 

heterogeneity of effects are due to an overestimation of effect sizes in the smaller PSC 

cohort, we undertook a simulation study which demonstrated that the observed degree of 

heterogeneity is unlikely to occur by chance (Supplementary Note).

Genetic correlation analysis—Genome-wide SNP data from 12,933 IBD cases and 

34,393 population controls of European descent was made available to us by the 

International IBD Genetics Consortium (IIBDGC). The quality control and imputation of 

these data using 1000 Genomes haplotypes has been previously described27. See 

Supplementary Note for details of the SNP and sample quality control (Supplementary Table 

13) undertaken across the IIBDGC and PSC data to ensure compatibility and remove 

duplicated individuals. Individual level genotype data for PSC, CD, UC and IBD were used 

to estimate the proportion of variance in liability explained by SNPs genome-wide under a 

multiplicative model using the linear mixed model based restricted maximum likelihood 

(REML) method implemented in the GCTA software32,50,51. Ancestry principal components 
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were calculated using genotype data from the 1000 Genomes project and were projected for 

all our cases and controls. The first twenty principals components were included as 

covariates in the linear mixed model. We assumed a prevalence of 0.0001 for PSC, 0.005 for 

CD and 0.0025 for UC. A bivariate extension of the linear mixed model31, again 

implemented in GCTA32, was used to estimate the additive covariance component and 

estimate the genetic correlation (rG) between PSC and either CD, UC, or IBD.

In addition, we undertook an alternative genetic correlation analysis that uses summary 

statistics and LD score regression33. Of the 7,458,430 SNPs that were shared between PSC 

and both IBDs, 1,102,210 HapMap3 SNPs were selected for the analysis as recommended. 

Then, pre-computed LD scores from the 1000 Genomes European data were used to run LD 

score regression to estimate genetic correlation.

Calculating comorbidity under a purely pleiotropic genetic model—Under a 

bivariate liability threshold model, where all disease risk is explained by additive genetics, 

the probability that an individual has disease 1, given that he has disease 2, is given by

where Ki is the prevalence of disease i, Ti =Φ−1(1−Ki) is the liability threshold of disease i, 

 is the heritability of disease i, rg is the genetic correlation and F(.) is the multivariate 

cumulative distribution function for normal distribution.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Odds ratios (and their 95% confidence intervals) for PSC, UC and CD across the 6 
PSC associated SNPs demonstrating strong evidence for a shared causal variant (maximum 
posterior probability > 0.8)
PSC ORs were taken from the GWAS and replication meta-analysis. UC and CD ORs were 

obtained from the latest association studies conducted by the International IBD Genetics 

Consortium26. Heterogeneity of odds tests were carried out using Cochran’s Q test. A failure 

to detect significant heterogeneity of odds does not necessarily indicate that effect sizes are 

equivalent because power to detect heterogeneity varies across SNPs.
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Figure 2. Genome-wide genetic correlation between PSC (and its subphenotypes), CD and UC
Genetic correlations (and their 95% confidence intervals) were calculated using a bivariate 

extension of the linear mixed model30 implemented in GCTA (Online Methods). PSC has a 

lower genetic correlation with both CD and UC than the two inflammatory bowel diseases 

have to each other. PSC is genetically more correlated to UC than it is to CD and this is 

consistent across the PSC subphenotypes.
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