293 research outputs found

    Editorial: Sudden cardiovascular events and comprehensive cardiac rehabilitation: Come back from “a bolt out of the blue”

    Get PDF

    A Critical Review of Reassesses on Student's Self concept in Technical High School

    Get PDF

    Individually separated supramolecular polymer chains toward solution-processable supramolecular polymeric materials

    Get PDF
    Herein, we present a simple design concept for a monomer that affords individually separated supramolecular polymer chains. Random introduction of alkyl chains with different lengths onto a monomer prevented its supramolecular polymers from bundling, permitting the preparation of concentrated solutions of the supramolecular polymer without gelation, precipitation, or crystallization. With such a solution in hand, we succeeded in fabricating self-standing films and threads consisting of supramolecular polymers

    Different responses to oxidized low-density lipoproteins in human polarized macrophages

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Oxidized low-density lipoprotein (oxLDL) uptake by macrophages plays an important role in foam cell formation. It has been suggested the presence of heterogeneous subsets of macrophage, such as M1 and M2, in human atherosclerotic lesions. To evaluate which types of macrophages contribute to atherogenesis, we performed cDNA microarray analysis to determine oxLDL-induced transcriptional alterations of each subset of macrophages.</p> <p>Results</p> <p>Human monocyte-derived macrophages were polarized toward the M1 or M2 subset, followed by treatment with oxLDL. Then gene expression levels during oxLDL treatment in each subset of macrophages were evaluated by cDNA microarray analysis and quantitative real-time RT-PCR. In terms of high-ranking upregulated genes and functional ontologies, the alterations during oxLDL treatment in M2 macrophages were similar to those in nonpolarized macrophages (M0). Molecular network analysis showed that most of the molecules in the oxLDL-induced highest scoring molecular network of M1 macrophages were directly or indirectly related to transforming growth factor (TGF)-β1. Hierarchical cluster analysis revealed commonly upregulated genes in all subset of macrophages, some of which contained antioxidant response elements (ARE) in their promoter regions. A cluster of genes that were specifically upregulated in M1 macrophages included those encoding molecules related to nuclear factor of kappa light polypeptide gene enhancer in B-cells (NF-κB) signaling pathway. Quantitative real-time RT-PCR showed that the gene expression of interleukin (IL)-8 after oxLDL treatment in M2 macrophages was markedly lower than those in M0 and M1 cells. <it>HMOX1 </it>gene expression levels were almost the same in all 3 subsets of macrophages even after oxLDL treatment.</p> <p>Conclusions</p> <p>The present study demonstrated transcriptional alterations in polarized macrophages during oxLDL treatment. The data suggested that oxLDL uptake may affect TGF-β1- and NF-κB-mediated functions of M1 macrophages, but not those of M0 or M2 macrophages. It is likely that M1 macrophages characteristically respond to oxLDL.</p

    CAF-INDUCED TAMs PROMOTE HCC PROGRESSION VIA PAI-1

    Get PDF
    Targeting the tumor stroma is an important strategy in cancer treatment. Cancer‑associated fibroblasts (CAFs) and tumor‑associated macrophages (TAMs) are two main components in the tumor microenvironment (TME) in hepatocellular carcinoma (HCC), which can promote tumor progression. Plasminogen activator inhibitor‑1 (PAI‑1) upregulation in HCC is predictive of unfavorable tumor behavior and prognosis. However, the crosstalk between cancer cells, TAMs and CAFs, and the functions of PAI‑1 in HCC remain to be fully investigated. In the present study, macrophage polarization and key paracrine factors were assessed during their interactions with CAFs and cancer cells. Cell proliferation, wound healing and Transwell and Matrigel assays were used to investigate the malignant behavior of HCC cells in vitro. It was found that cancer cells and CAFs induced the M2 polarization of TAMs by upregulating the mRNA expression levels of CD163 and CD206, and downregulating IL‑6 mRNA expression and secretion in the macrophages. Both TAMs derived from cancer cells and CAFs promoted HCC cell proliferation and invasion. Furthermore, PAI‑1 expression was upregulated in TAMs after being stimulated with CAF‑conditioned medium and promoted the malignant behavior of the HCC cells by mediating epithelial‑mesenchymal transition. CAFs were the main producer of C‑X‑C motif chemokine ligand 12 (CXCL12) in the TME and CXCL12 contributed to the induction of PAI‑1 secretion in TAMs. In conclusion, the results of the present study suggested that CAFs promoted the M2 polarization of macrophages and induced PAI‑1 secretion via CXCL12. Furthermore, it was found that PAI‑1 produced by the TAMs enhanced the malignant behavior of the HCC cells. Therefore, these factors may be targets for inhibiting the crosstalk between tumor cells, CAFs and TAMs

    The Fragility of Cryopreserved Insulin-producing Cells Differentiated from Adipose-tissue-derived Stem Cells

    Get PDF
    The aim of our study is to determine whether insulin-producing cells (IPCs) differentiated from adipose-tissue-derived stem cells (ADSCs) can be cryopreserved. Human ADSCs were differentiated into IPCs using our two-step protocol encompassing a three-dimensional culture and xenoantigen-free method. Thereafter, IPCs were frozen using three different methods. First, IPCs were immediately frozen at −80°C (−80°C group). Second, IPCs were initially placed into a Bicell freezing container before freezing at −80°C (BICELL group). Third, a vitrification method for oocytes and embryos was used (CRYOTOP group). Cell counting kit-8 (CCK-8) assay showed that cell viability was decreased in all groups after cryopreservation (P < 0.01). Corroboratively, the amount of adenosine triphosphate was markedly decreased after cryopreservation in all groups (P < 0.01). Immunofluorescence staining showed a reduced positive staining area for insulin in all cryopreservation groups. Furthermore, 4′,6-diamidino-2-phenylindole and merged immunofluorescence images showed that cryopreserved cells appeared to be randomly reduced in the −80°C group and CRYOTOP group, while only the central region was visibly reduced in the BICELL group. Using immunohistochemical staining, IPCs after cryopreservation were shown to be positive for cleaved caspase-3 antibody in all groups. Finally, insulin secretion following glucose stimulation was significantly reduced in IPCs from all groups after cryopreservation (P < 0.01). In conclusion, IPCs may be too fragile for cryopreservation with accomplished methods and further investigations for a suitable preservation method are required

    Nrf2 signaling in sorafenib-resistant HCC

    Get PDF
    Background and aim As a multiple tyrosine kinase inhibitor, sorafenib is widely used to treat hepatocellular carcinoma (HCC), but patients frequently face resistance problems. Because the mechanism controlling sorafenib-resistance is not well understood, this study focused on the connection between tumor characteristics and the Nrf2 signaling pathway in a sorafenib-resistant HCC cell line. Methods A sorafenib-resistant HCC cell line (Huh7) was developed by increasing the dose of sorafenib in the culture medium until the target concentration was reached. Cell morphology, migration/invasion rates, and expression of stemness-related and ATP-binding cassette (ABC) transporter genes were compared between sorafenib-resistant Huh7 cells and parental Huh7 cells. Next, a small interfering RNA was used to knock down Nrf2 expression in sorafenib-resistant Huh7 cells, after which cell viability, stemness, migration, and ABC transporter gene expression were examined again. Results Proliferation, migration, and invasion rates of sorafenib-resistant Huh7 cells were significantly increased relative to the parental cells with or without sorafenib added to the medium. The expression levels of stemness markers and ABC transporter genes were up-regulated in sorafenib-resistant cells. After Nrf2 was knocked down in sorafenib-resistant cells, cell migration and invasion rates were reduced, and expression levels of stemness markers and ABC transporter genes were reduced. Conclusion Nrf2 signaling promotes cancer stemness, migration, and expression of ABC transporter genes in sorafenib-resistant HCC cells

    BAFF/NFκB経路はソラフェニブ耐性肝癌と癌関連線維芽細胞の相互作用に重要である

    Get PDF
    The tumor microenvironment affects malignancy in hepatocellular carcinoma (HCC) cells, and cancer-associated fibroblasts (CAFs) play an important role in the microenvironment. As recent studies indicated a difference between CAFs isolated from chemoresistant and non-resistant cancer tissues, therefore we investigated the intracellular mechanism in resistant HCC co-cultured CAFs and interactions between these CAFs with cancer cells. We established a sorafenib-resistant (SR) Huh7 (human HCC) cell line, and characterized it with cytokine assays, then developed CAFs by co-culturing human hepatic stellate cells with resistant or parental Huh7 cells. The 2 types of CAFs were co-cultured with parental Huh7 cells, thereafter the cell viability of these Huh7 cells was checked under sorafenib treatment. The SR Huh7 (Huh7SR) cells expressed increased B-cell activating factor (BAFF), which promoted high expression of CAF-specific markers in Huh7SR-co-cultured CAFs, showed activated BAFF, BAFF-R, and downstream of the NFκB-Nrf2 pathway, and aggravated invasion, migration, and drug resistance in co-cultured Huh7 cells. When we knocked down BAFF expression in Huh7SR cells, the previously increased malignancy and BAFF/NFκB axis in Huh7SR-co-cultured CAFs reversed, and enhanced chemoresistance in co-cultured Huh7 cells returned as well. In conclusion, the BAFF/NFκB pathway was activated in CAFs co-cultured with cell-culture medium from resistant Huh7, which promoted chemoresistance, and increased the malignancy in co-cultured non-resistant Huh7 cells. This suggests that the BAFF/NFκB axis in CAFs might be a potential therapeutic target in chemoresistance of HCC

    The interaction between cancer associated fibroblasts and tumor associated macrophages via the osteopontin pathway in the tumor microenvironment of hepatocellular carcinoma

    Get PDF
    Background: Cancer-tumor associated macrophage (TAM)-cancer associated fibroblast (CAF) interactions are an important factor in the tumor microenvironment of hepatocellular carcinoma. Materials and Methods: Hepatic stellate cells (HSCs) were cultured with cancer cell-conditioned medium (Ca.-CM), TAM-CM and CAF-CM, and the expression of CAF markers were evaluated by RT-PCR. Whether HSCs cultured with Ca.-CM, TAM-CM and CAF-CM contributed to the enhanced malignancy of cancer cells was examined using proliferation, invasion and migration assays. Furthermore, the differences between these three types of CM were evaluated using cytokine arrays. Results: HSCs cultured with Ca.-CM, TAM-CM and CAF-CM showed significantly increased mRNA expression of αSMA, FAP and IL-6. All HSCs cultured with each CM exhibited significantly increased proliferation, invasion and migration of cancer cells. The osteopontin concentration was significantly higher in HSCs cultured with TAM-CM than the other CAF-CMs. Osteopontin inhibition significantly reduced osteopontin secretion from HSCs cultured with TAM-CM and suppressed the proliferation and invasion of cancer cells enhanced by HSCs cultured with TAM-CM. Conclusions: We observed enhanced osteopontin secretion from TAMs, and this increased osteopontin further promoted osteopontin secretion from HSCs cultured with TAM-CM, leading to increased malignancy. For the first time, we demonstrated the importance of cancer-TAM-CAF interactions via osteopontin in hepatocellular carcinoma
    corecore