20 research outputs found

    14q12 Microdeletion syndrome and congenital variant of Rett syndrome.

    No full text
    Contains fulltext : 81782.pdf (publisher's version ) (Closed access)Only two patients with 14q12 deletion have been reported to date. Here, we describe an additional patient with a similar deletion in order to improve the clinical delineation of this new microdeletion syndrome. The emerging phenotype is characterized by a Rett-like clinical course with an almost normal development during the first months of life followed by a period of regression. A peculiar facial phenotype is also present and it is characterized by mild dysmorphisms such as downslanting palpebral fissures, bilateral epicanthic folds, depressed nasal bridge, bulbous nasal tip, tented upper lip, everted lower lip and large ears. The relationship between this microdeletion syndrome and the congenital variant of Rett syndrome due to point mutations in one of the genes included in the deleted region, FOXG1, is discussed

    3.2 Mb microdeletion in chromosome 7 bands q22.2-q22.3 associated with overgrowth and delayed bone age.

    No full text
    We report a patient with mental retardation, epilepsy, overgrowth, delayed bone age, peculiar facial features, corpus callosum hypoplasia, enlarged cisterna magna and right cerebellar hypoplasia. Array-CGH analysis revealed the presence of a de novo 3.2 Mb interstitial deletion of the long arm of chromosome 7 involving bands q22.2-q22.3. The rearrangement includes 15 genes and encompasses a genomic region that represents a site of frequent loss of heterozygosity in myeloid malignancies. Four genes are implicated in the control of cell cycle: SRPK2, MLL5, RINT1 and LHFPL3. Haploinsufficiency of these genes might therefore be associated with overgrowth and could confer susceptibility to cancers or other tumours, so that attention to this possibility would be appropriate during regular medical review. In conclusion, array-CGH analysis should be performed in patients with overgrowth where the known causes have already been excluded, because some still unclassified overgrowth syndromes may be caused by subtle genomic imbalances.We report a patient with mental retardation, epilepsy, overgrowth, delayed bone age, peculiar facial features, corpus callosum hypoplasia, enlarged cisterna magna and right cerebellar hypoplasia. Array-CGH analysis revealed the presence of a de novo 3.2 Mb interstitial deletion of the long arm of chromosome 7 involving bands q22.2eq22.3. The rearrangement includes 15 genes and encompasses a genomic region that represents a site of frequent loss of heterozygosity inmyeloid malignancies. Four genes are implicated in the control of cell cycle: SRPK2, MLL5, RINT1 and LHFPL3. Haploinsufficiency of these genes might therefore be associated with overgrowth and could confer susceptibility to cancers or other tumours, so that attention to this possibility would be appropriate during regular medical review. In conclusion, array- CGH analysis should be performed in patients with overgrowth where the known causes have already been excluded, because some still unclassified overgrowth syndromes may be caused by subtle genomic imbalances. 2010 Elsevier Masson SAS. All rights reserved

    MECP2 deletions and genotype-phenotype correlation in Rett syndrome.

    No full text
    Rett syndrome is a neurodevelopmental disorder that represents one of the most common genetic causes of mental retardation in girls. MECP2 point mutations in exons 2-4 account for about 80% of classic Rett cases and for a lower percentage of variant patients. We investigated the genetic cause in 77 mutation-negative Rett patients (33 classic, 31 variant, and 13 Rett-like cases) by searching missed MECP2 defects. DHPLC analysis of exon 1 and MLPA analysis allowed us to identify the defect in 17 Rett patients: one exon I point mutation (c.47_57del) in a classic case and 16 MECP2 large deletions (15/33 classic and 1/31 variant cases). One identical intragenic MECP2 deletion, probably clue to gonadal mosaicism, was found in two sisters with discordant phenotype: one classic and one "highly functioning" preserved speech variant. This result indicates that other epigenetic or genetic factors, beside MECP2, may contribute to phenotype modulation. Three out of 16 MECP2 deletions extend to the adjacent centromeric IRAK1 gene. A putative involvement of the hemizygosity of this gene in the ossification process is discussed. Finally, results reported here clearly indicate that MECP2 large deletions are a common cause of classic Rett, and MLPA analysis is mandatory in MECP2-negative patients, especially in those more severely affected (P = 0.044)

    The XLMR gene ACSL4 plays a role in dendritic spine architecture.

    No full text
    ACSL4 is a gene involved in non-syndromic X-linked mental retardation. It encodes for a ubiquitous protein that adds coenzyme A to long-chain fatty acids, with a high substrate preference for arachidonic acid. It presents also a brain-specific isoform deriving from an alternative splicing and containing 41 additional N-terminal amino acids. To start to unravelling the link between ACSL4 and mental retardation, we have performed molecular and cell biological studies. By retro-transcription polymerase chain reaction analyses we identified a new transcript with a shorter 5'-UTR region. By immunofluorescence microscopy in embryonic rat hippocampal neurons we report that ACSL4 is associated preferentially to endoplasmic reticulum tubules. ACSL4 knockdown by siRNAs in hippocampal neurons indicated that this protein is largely dispensable for these cells' gross architectural features (i.e. axonal and dendritic formation and final length) yet it is required for the presence of normal spines. In fact, reduced levels of ACSL4 led to a significant reduction in dendritic spine density and an alteration in spine/filopodia distribution. The possible mechanisms behind this phenotype are discussed

    Syndromic mental retardation with thrombocytopenia due to 21q22.11q22.12 deletion: Report of three patients.

    No full text
    During the last few years, an increasing number of microdeletion/microduplication syndromes have been delineated. This rapid evolution is mainly due to the availability of microarray technology as a routine diagnostic tool. Microdeletions of the 21q22.11q22.12 region encompassing the RUNX1 gene have been reported in nine patients presenting with syndromic thrombocytopenia and mental retardation. RUNX1 gene is responsible for an autosomal dominant platelet disorder with predisposition to acute myelogenous leukemia. We report on three novel patients with an overlapping "de novo" interstitial deletion involving the band 21q22 characterized by array-CGH. All our patients presented with severe developmental delay, dysmorphic features, behavioral problems, and thrombocytopenia. Comparing the clinical features of our patients with the overlapping ones already reported two potential phenotypes related to 21q22 microdeletion including RUNXI were highlighted: thrombocytopenia with mild dysmorphic features and syndromic thrombocytopenia with growth and developmental delay. (C) 2010 Wiley-Liss, Inc

    Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population.

    No full text
    Cohen syndrome, caused by mutations in the COH1 gene, is an autosomal recessive disorder consisting of mental retardation, microcephaly, growth delay, severe myopia, progressive chorioretinal dystrophy, facial anomalies, slender limbs with narrow hands and feet, tapered fingers, short stature, kyphosis and/or scoliosis, pectus carinatum, joint hypermobility, pes calcaneovalgus, and, variably, truncal obesity. Here, we describe the clinical and molecular findings in 14 patients from an isolated Greek island population. The clinical phenotype was fairly homogeneous, although microcephaly was not constant, and some patients had severe visual disability. All patients were homozygous for a novel intragenic COH1 deletion spanning exon 6 to exon 16, suggesting a founder effect. The discovery of this mutation has made carrier detection and prenatal diagnosis possible in this population

    Cohen syndrome resulting from a novel large intragenic COH1 deletion segregating in an isolated Greek island population

    No full text
    Cohen syndrome, caused by mutations in the COH1 gene, is an autosomal recessive disorder consisting of mental retardation, microcephaly, growth delay, severe myopia, progressive chorioretinal dystrophy, facial anomalies, slender limbs with narrow hands and feet, tapered fingers, short stature, kyphosis and/or scoliosis, pectus carinatum, joint hypermobility, pes calcaneovalgus, and, variably, truncal obesity. Here, we describe the clinical and molecular findings in 14 patients from an isolated Greek island population. The clinical phenotype was fairly homogeneous, although microcephaly was not constant, and some patients had severe visual disability. All patients were homozygous for a novel intragenic COH1 deletion spanning exon 6 to exon 16, suggesting a founder effect. The discovery of this mutation has made carrier detection and prenatal diagnosis possible in this population
    corecore