101 research outputs found

    Notes on the Hamiltonian formulation of 3D Yang-Mills theory

    Full text link
    Three-dimensional Yang-Mills theory is investigated in the Hamiltonian formalism based on the Karabali-Nair variable. A new algorithm is developed to obtain the renormalized Hamiltonian by identifying local counterterms in Lagrangian with the use of fictitious holomorphic symmetry existing in the framework with the KN variable. Our algorithm is totally algebraic and enables one to calculate the ground state wave functional recursively in gauge potentials. In particular, the Gaussian part thus calculated is shown to coincide with that obtained by Leigh et al. Higher-order corrections to the Gaussian part are also discussed.Comment: 26 pages, LaTeX; discussions on IR regulators and local counterterms improved, references adde

    The development of “Ultimate Rudder” for EEDI

    Get PDF
    EEDI (Energy Efficiency Design Index) came into effect mandatory in Jan. 2013, and the ship owners definitely required a higher efficiency propulsion system than ever before. Hence, the shipyards have been conducting an optimization of ESD (Energy Saving Device) system in self-propulsion test for each project. As the results, the shipyards have installed a rudder bulb as an effective ESD. The rudder bulb is a popular ESD system from a long time ago. Mewis1) described that the rudder bulb was developed by Costa in 1952 and the efficiency improve by the rudder bulb for a container vessel was 1% on average. Fujii et al.2) developed “MIPB (Mitsui Integrated Propeller Boss)” as an advanced rudder bulb. The feature of MIPB was a streamlined profile from propeller cap to rudder. According to their paper, the efficiency improve by installing MIPB was 2-4%. Recently, NAKASHIMA PROPELLER Co., Ltd. developed ECO-Cap (economical propeller cap)3) as a new ESD with FRP (Fiber Reinforced Plastics). The strength of FRP is higher than that of NAB (Nickel Aluminium Bronze), therefore ECO-Cap was able to adopt thin fins on propeller caps for low resistance. Although the material used for the energy- saving propeller cap was generally NAB, the research results on FRP showed that FRP could be used as ESD due to their properties such as lightweight and flexibility. As explained above, the authors thought that there was a possibility to evolve the rudder bulb profile using the easily moldable FRP compared with NAB. This paper described about the development of “Ultimate Rudder” of new design concept by FRP. The authors optimized the profile of “Ultimate Rudder” by CFD and confirmed the efficiency increase from 4.9 to 5.4% in self-propulsion test

    Study on the rudder characteristics of ultimate rudder by numerical calculation

    Get PDF
    The authors invented Ultimate Rudder3) as the rudder with bulb. The authors calculated the rudder characteristics of the normal rudder and Ultimate Rudder by CFD at several steering angles and compared these values. The result showed that regardless of the presence or absence of the bulb, signs of separation appear on the control surface with a steering angle of 20 deg. to 30 deg. and regarding the steering torque coefficient, it was found that the steering torque coefficient of Ultimate Rudder is larger than the normal Rudder when the steering angle is less than 20 deg. and also the steering torque coefficient can be decreased by changing the shape of the rudder bulb

    Functional expression of thiocyanate hydrolase is promoted by its activator protein, P15K

    Get PDF
    AbstractThiocyanate hydrolase (SCNase) is a cobalt-containing enzyme with a post-translationally modified cysteine ligand, γCys131-SO2H. When the SCNase α, β and γ subunits were expressed in Escherichia coli, the subunits assembled to form a hetero-dodecamer, (αβγ)4, like native SCNase but exhibited no catalytic activity. Metal analysis indicated that SCNase was expressed as an apo-form irrespective of the presence of cobalt in the medium. On the contrary, SCNase co-expressed with P15K, encoded just downstream of SCNase genes, in cobalt-enriched medium under the optimized condition (SCNase(+P15K)) possessed 0.86 Co atom/αβγ trimer and exhibited 78% of the activity of native SCNase. SCNase(+P15K) showed a UV–Vis absorption peak characteristic of the SCNase cobalt center. About 70% of SCNase(+P15K) had the γCys131-SO2H modification. These results indicate that SCNase(+P15K) is the active holo-SCNase. P15K is likely to promote the functional expression of SCNase probably by assisting the incorporation of cobalt ion

    A Novel Reagent for the Synthesis of Branched-chain Functionalized Sugars. Dichloromethyllithium

    Get PDF
    A few novel branched-chain functionalized sugars, which have important functions such as hydroxyl, hydro, chloro, or azido at quaternary carbon were prepared in good yield via the same intermediary spiro chloroepoxide derivative by use of dichloromethyllithium

    Expression of human mutant cyclin dependent kinase 4, Cyclin D and telomerase extends the life span but does not immortalize fibroblasts derived from loggerhead sea turtle (Caretta caretta)

    Get PDF
    Conservation of the genetic resources of endangered animals is crucial for future generations. The loggerhead sea turtle (Caretta caretta) is a critically endangered species, because of human hunting, hybridisation with other sea turtle species, and infectious diseases. In the present study, we established primary fibroblast cell lines from the loggerhead sea turtle, and showed its species specific chromosome number is 2n = 56, which is identical to that of the hawksbill and olive ridley sea turtles. We first showed that intensive hybridization among multiple sea turtle species caused due to the identical chromosome number, which allows existence of stable hybridization among the multiple sea turtle species. Expressions of human-derived mutant Cyclin-dependent kinase 4 (CDK4) and Cyclin D dramatically extended the cell culture period, when it was compared with the cell culture period of wild type cells. The recombinant fibroblast cell lines maintained the normal chromosome condition and morphology, indicating that, at the G1/S phase, the machinery to control the cellular proliferation is evolutionally conserved among various vertebrates. To our knowledge, this study is the first to demonstrate the functional conservation to overcome the negative feedback system to limit the turn over of the cell cycle between mammalian and reptiles. Our cell culture method will enable the sharing of cells from critically endangered animals as research materials

    The Synthetic Curcumin Analogue GO-Y030 Effectively Suppresses the Development of Pressure Overload-induced Heart Failure in Mice

    Get PDF
    Curcumin is a naturally occurring p300-histone acetyltransferase (p300-HAT) inhibitor that suppresses cardiomyocyte hypertrophy and the development of heart failure in experimental animal models. To enhance the therapeutic potential of curcumin against heart failure, we produced a series of synthetic curcumin analogues and investigated their inhibitory activity against p300-HAT. The compound with the strongest activity was further evaluated to determine its effects on cardiomyocyte hypertrophy and pressure overload-induced heart failure in mice. We synthesised five synthetic curcumin analogues and found that a compound we have named GO-Y030 most strongly inhibited p300-HAT activity. Furthermore, 1 μM GO-Y030, in a manner equivalent to 10 µM curcumin, suppressed phenylephrine-induced hypertrophic responses in cultured cardiomyocytes. In mice undergoing transverse aortic constriction surgery, administration of GO-Y030 at a mere 1% of an equivalently-effective dose of curcumin significantly attenuated cardiac hypertrophy and systolic dysfunction. In addition, this low dose of GO-Y030 almost completely blocked histone H3K9 acetylation and eliminated left ventricular fibrosis. A low dose of the synthetic curcumin analogue GO-Y030 effectively inhibits p300-HAT activity and markedly suppresses the development of heart failure in mice
    corecore