160 research outputs found

    New psychoactive substance Α-PVP in a traffic accident case

    Get PDF
    The problems of new psychoactive substances (NPSs), especially related to drivers, constitute an open research area. In this case report, we present a traffic accident case, in which two passengers of five individuals died instantly, while the other three persons survived the accident with minor injuries only. From the blood samples of the driver and the passengers, α-pyrrolidinovalerophenone (α-PVP), an NPS belonging to the category of cathinone derivatives, was disclosed. Therefore, we established a detailed procedure for analysis of α-PVP in blood samples by liquid chromatography–tandem mass spectrometry. After careful validation tests of this method, α-PVP concentration in blood samples from the surviving driver and passengers, and from the two deceased, were measured. The concentrations varied from 20 to 650 ng/mL. Access to detailed information originating from the court files and from explanations provided by the driver and eye witnesses revealed extremely valuable illustrative details addressing the symptoms and pharmacological effects of α-PVP on the human organism, thus contributing to enriching the body of knowledge of α-PVP abuse

    Anthropogenic Space Weather

    Full text link
    Anthropogenic effects on the space environment started in the late 19th century and reached their peak in the 1960s when high-altitude nuclear explosions were carried out by the USA and the Soviet Union. These explosions created artificial radiation belts near Earth that resulted in major damages to several satellites. Another, unexpected impact of the high-altitude nuclear tests was the electromagnetic pulse (EMP) that can have devastating effects over a large geographic area (as large as the continental United States). Other anthropogenic impacts on the space environment include chemical release ex- periments, high-frequency wave heating of the ionosphere and the interaction of VLF waves with the radiation belts. This paper reviews the fundamental physical process behind these phenomena and discusses the observations of their impacts.Comment: 71 pages, 35 figure

    Chlamydiatrachomatis and placental inflammation in early preterm delivery

    Get PDF
    Chlamydiatrachomatis may infect the placenta and subsequently lead to preterm delivery. Our aim was to evaluate the relationship between the presence of Chlamydiatrachomatis and signs of placental inflammation in women who delivered at 32 weeks gestation or less. Setting: placental histology and clinical data were prospectively obtained from 304 women and newborns at the Erasmus MC-Sophia, Rotterdam, the Netherlands. C.trachomatis testing of placentas was done retrospectively using PCR. C.trachomatis was detected in 76 (25%) placentas. Histological evidence of placental inflammation was present in 123 (40%) placentas: in 41/76 (54%) placentas with C.trachomatis versus 82/228 (36%) placentas without C.trachomatis infection (OR 2.1, 95% CI 1.2–3.5). C.trachomatis infection correlated with the progression (P = 0.009) and intensity (P = 0.007) of materno-fetal placental inflammation. C.trachomatis DNA was frequently detected in the placenta of women with early preterm delivery, and was associated with histopathological signs of placental inflammation

    Anduril 2: Upgraded large-scale data integration framework

    Get PDF
    aSummary: Anduril is an analysis and integration framework that facilitates the design, use, parallelization and reproducibility of bioinformatics workflows. Anduril has been upgraded to use Scala for pipeline construction, which simplifies software maintenance, and facilitates design of complex pipelines. Additionally, Anduril's bioinformatics repository has been expanded with multiple components, and tutorial pipelines, for next-generation sequencing data analysis.Peer reviewe

    Large-scale data integration framework provides a comprehensive view on glioblastoma multiforme

    Get PDF
    Background: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and medical benefits, advanced computational methods for data analysis, integration and visualization are needed.Methods: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of data based on different parameters, and provides direct links to more detailed data on genes, transcripts or genomic regions. Anduril is open-source; all methods and documentation are freely available.Results: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly inhibited cell proliferation. All analysis results are available as a comprehensive website.Conclusions: Our results demonstrate that integrated analysis and visualization of multidimensional and heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results provide several glioblastoma multiforme candidate genes for further studies. Anduril is available at http://csbi.ltdk.helsinki.fi/anduril/ The glioblastoma multiforme analysis results are available at http://csbi.ltdk.helsinki.fi/anduril/tcga-gbm

    Mobile phones and head tumours. The discrepancies in cause-effect relationships in the epidemiological studies - how do they arise?

    Get PDF
    The uncertainty about the relationship between the use of mobile phones (MPs: analogue and digital cellulars, and cordless) and the increase of head tumour risk can be solved by a critical analysis of the methodological elements of both the positive and the negative studies. Results by Hardell indicate a cause/effect relationship: exposures for or latencies from 65 10 years to MPs increase by up to 100% the risk of tumour on the same side of the head preferred for phone use (ipsilateral tumours) - which is the only one significantly irradiated - with statistical significance for brain gliomas, meningiomas and acoustic neuromas. On the contrary, studies published under the Interphone project and others produced negative results and are characterised by the substantial underestimation of the risk of tumour. However, also in the Interphone studies a clear and statistically significant increase of ipsilateral head tumours (gliomas, neuromas and parotid gland tumours) is quite common in people having used MPs since or for 65 10 years. And also the metaanalyses by Hardell and other Authors, including only the literature data on ipsilateral tumours in people having used MPs since or for 65 10 years - and so also part of the Interphone data - still show statistically significant increases of head tumours
    corecore