207 research outputs found

    Self-supervised Multi-view Stereo via Effective Co-Segmentation and Data-Augmentation

    Full text link
    Recent studies have witnessed that self-supervised methods based on view synthesis obtain clear progress on multi-view stereo (MVS). However, existing methods rely on the assumption that the corresponding points among different views share the same color, which may not always be true in practice. This may lead to unreliable self-supervised signal and harm the final reconstruction performance. To address the issue, we propose a framework integrated with more reliable supervision guided by semantic co-segmentation and data-augmentation. Specially, we excavate mutual semantic from multi-view images to guide the semantic consistency. And we devise effective data-augmentation mechanism which ensures the transformation robustness by treating the prediction of regular samples as pseudo ground truth to regularize the prediction of augmented samples. Experimental results on DTU dataset show that our proposed methods achieve the state-of-the-art performance among unsupervised methods, and even compete on par with supervised methods. Furthermore, extensive experiments on Tanks&Temples dataset demonstrate the effective generalization ability of the proposed method.Comment: This paper is accepted by AAAI-21 with a Distinguished Paper Awar

    Semi-supervised Deep Multi-view Stereo

    Full text link
    Significant progress has been witnessed in learning-based Multi-view Stereo (MVS) under supervised and unsupervised settings. To combine their respective merits in accuracy and completeness, meantime reducing the demand for expensive labeled data, this paper explores the problem of learning-based MVS in a semi-supervised setting that only a tiny part of the MVS data is attached with dense depth ground truth. However, due to huge variation of scenarios and flexible settings in views, it may break the basic assumption in classic semi-supervised learning, that unlabeled data and labeled data share the same label space and data distribution, named as semi-supervised distribution-gap ambiguity in the MVS problem. To handle these issues, we propose a novel semi-supervised distribution-augmented MVS framework, namely SDA-MVS. For the simple case that the basic assumption works in MVS data, consistency regularization encourages the model predictions to be consistent between original sample and randomly augmented sample. For further troublesome case that the basic assumption is conflicted in MVS data, we propose a novel style consistency loss to alleviate the negative effect caused by the distribution gap. The visual style of unlabeled sample is transferred to labeled sample to shrink the gap, and the model prediction of generated sample is further supervised with the label in original labeled sample. The experimental results in semi-supervised settings of multiple MVS datasets show the superior performance of the proposed method. With the same settings in backbone network, our proposed SDA-MVS outperforms its fully-supervised and unsupervised baselines.Comment: This paper is accepted in ACMMM-2023. The code is released at: https://github.com/ToughStoneX/Semi-MV

    Mechanism of crack propagation for K9 glass

    Get PDF
    In order to study the mechanism of crack propagation, the varied cutting-depth scratch experiment is carried out and smoothed particle hydrodynamics (SPH) simulation method is used to assistant the investigation. The SPH simulation results reveal that crack will propagate in the direction where stress concentration exceeds the fracture toughness of K9 glass. The initial crack length in critical transition depth is calculated by combining the critical stress of fracture and the fracture toughness of K9 glass. Based on the effective plastic strain, the relation between scratching depth and crack depth is obtained. The recovery of crack tip is found and explained from the relationship between cutting depth and crack depth. Using the energy balance theory of Griffith, the variation of material internal energy is revealed. Comparing the scratching forces obtained from experiment and simulation, the validity of simulation results is verified. The phenomenon of crack delayed propagation is found in both experiment and simulation. The explanation of mechanism is given

    A Unified Framework for Integrating Semantic Communication and AI-Generated Content in Metaverse

    Full text link
    As the Metaverse continues to grow, the need for efficient communication and intelligent content generation becomes increasingly important. Semantic communication focuses on conveying meaning and understanding from user inputs, while AI-Generated Content utilizes artificial intelligence to create digital content and experiences. Integrated Semantic Communication and AI-Generated Content (ISGC) has attracted a lot of attentions recently, which transfers semantic information from user inputs, generates digital content, and renders graphics for Metaverse. In this paper, we introduce a unified framework that captures ISGC two primary benefits, including integration gain for optimized resource allocation and coordination gain for goal-oriented high-quality content generation to improve immersion from both communication and content perspectives. We also classify existing ISGC solutions, analyze the major components of ISGC, and present several use cases. We then construct a case study based on the diffusion model to identify an optimal resource allocation strategy for performing semantic extraction, content generation, and graphic rendering in the Metaverse. Finally, we discuss several open research issues, encouraging further exploring the potential of ISGC and its related applications in the Metaverse.Comment: 8 pages, 6 figure

    A Unified Blockchain-Semantic Framework for Wireless Edge Intelligence Enabled Web 3.0

    Full text link
    Web 3.0 enables user-generated contents and user-selected authorities. With decentralized wireless edge computing architectures, Web 3.0 allows users to read, write, and own contents. A core technology that enables Web 3.0 goals is blockchain, which provides security services by recording content in a decentralized and transparent manner. However, the explosion of on-chain recorded contents and the fast-growing number of users cause increasingly unaffordable computing and storage resource consumption. A promising paradigm is to analyze the semantic information of contents that can convey precisely the desired meanings without consuming many resources. In this article, we propose a unified blockchain-semantic ecosystems framework for wireless edge intelligence-enabled Web 3.0. Our framework consists of six key components to exchange semantic demands. We then introduce an Oracle-based proof of semantic mechanism to implement on-chain and off-chain interactions of Web 3.0 ecosystems on semantic verification algorithms while maintaining service security. An adaptive Deep Reinforcement Learning-based sharding mechanism on Oracle is designed to improve interaction efficiency, which can facilitate Web 3.0 ecosystems to deal with varied semantic demands. Finally, a case study is presented to show that the proposed framework can dynamically adjust Oracle settings according to varied semantic demands.Comment: 8 pages, 5 figures, 1 tabl

    Study on surrounding rock failure characteristics and control technology of gob-side entry retaining in"three hard" thin coal seam

    Get PDF
    This study aims to address existing problems of complex stress conditions and difficulties in retaining roadway so as to achieve long-term stability of roadway surrounding rock in gob-side entry in thin coal seam. Specifically, we investigated the 4301 working face of Liangshuijing Coal Mine in Huisen Coal Industry of Shaanxi Province through theoretical analysis, numerical simulation and engineering practice, with an aim to study the failure characteristics and control countermeasures of surrounding rock of gob-side entry retaining in shallow buried "triple hard" thin coal seam, and analyse the influence of structural parameters of roadside support on roadway stability. The results show that 1)maintaining the roadway through roadside filling body requires sufficient support strength and appropriate shrinkage to the roof and ensuring the overall stability of the roadway; 2)the mechanical behaviour of high water filling material under uniaxial compression can be divided into four stages: "uniform compaction, elastic deformation, dynamic instability and deterioration failure". The numerical simulation results show that in increasing the width of the filling body, the maximum stress first increases, then decreases and then increases, and a stable bearing stress core appears at 1.6 m. Theoretical calculation shows that the optimal height of roof cutting is 10.7 m, and it offers the roof cutting scheme and parameters of shaped blasting. Engineering practice shows that there is no large deformation and no obvious stress concentration in the 60 m range behind the working face. The surrounding rock exhibits good overall control effect and stable structure, and the effect of retaining roadway meets the design requirements

    CHRONOS: Time-Aware Zero-Shot Identification of Libraries from Vulnerability Reports

    Full text link
    Tools that alert developers about library vulnerabilities depend on accurate, up-to-date vulnerability databases which are maintained by security researchers. These databases record the libraries related to each vulnerability. However, the vulnerability reports may not explicitly list every library and human analysis is required to determine all the relevant libraries. Human analysis may be slow and expensive, which motivates the need for automated approaches. Researchers and practitioners have proposed to automatically identify libraries from vulnerability reports using extreme multi-label learning (XML). While state-of-the-art XML techniques showed promising performance, their experiment settings do not practically fit what happens in reality. Previous studies randomly split the vulnerability reports data for training and testing their models without considering the chronological order of the reports. This may unduly train the models on chronologically newer reports while testing the models on chronologically older ones. However, in practice, one often receives chronologically new reports, which may be related to previously unseen libraries. Under this practical setting, we observe that the performance of current XML techniques declines substantially, e.g., F1 decreased from 0.7 to 0.24 under experiments without and with consideration of chronological order of vulnerability reports. We propose a practical library identification approach, namely CHRONOS, based on zero-shot learning. The novelty of CHRONOS is three-fold. First, CHRONOS fits into the practical pipeline by considering the chronological order of vulnerability reports. Second, CHRONOS enriches the data of the vulnerability descriptions and labels using a carefully designed data enhancement step. Third, CHRONOS exploits the temporal ordering of the vulnerability reports using a cache to prioritize prediction of...Comment: Accepted to the Technical Track of ICSE 202

    3D phase field modeling of multi-dendrites evolution in solidification and validation by synchrotron x-ray tomography

    Get PDF
    © 2021 by the authors. Licensee MDPI, Basel, Switzerland. In this paper, the dynamics of multi-dendrite concurrent growth and coarsening of an Al-15 wt.% Cu alloy was studied using a highly computationally efficient 3D phase field model and real-time synchrotron X-ray micro-tomography. High fidelity multi-dendrite simulations were achieved and the results were compared directly with the time-evolved tomography datasets to quantify the relative importance of multi-dendritic growth and coarsening. Coarsening mechanisms under different solidification conditions were further elucidated. The dominant coarsening mechanisms change from small arm melting and interdendritic groove advancement to coalescence when the solid volume fraction approaches ~0.70. Both tomography experiments and phase field simulations indicated that multi-dendrite coarsening obeys the classical Lifshitz–Slyozov–Wagner theory Rn − Rn0=kc(t − t0), but with a higher constant of n = 4.3

    cDNA-AFLP analysis reveals differential gene expression in compatible interaction of wheat challenged with Puccinia striiformis f. sp. tritici

    Get PDF
    <p>Abstract</p> <p>Background</p> <p><it>Puccinia striiformis </it>f. sp. <it>tritici </it>is a fungal pathogen causing stripe rust, one of the most important wheat diseases worldwide. The fungus is strictly biotrophic and thus, completely dependent on living host cells for its reproduction, which makes it difficult to study genes of the pathogen. In spite of its economic importance, little is known about the molecular basis of compatible interaction between the pathogen and wheat host. In this study, we identified wheat and <it>P. striiformis </it>genes associated with the infection process by conducting a large-scale transcriptomic analysis using cDNA-AFLP.</p> <p>Results</p> <p>Of the total 54,912 transcript derived fragments (TDFs) obtained using cDNA-AFLP with 64 primer pairs, 2,306 (4.2%) displayed altered expression patterns after inoculation, of which 966 showed up-regulated and 1,340 down-regulated. 186 TDFs produced reliable sequences after sequencing of 208 TDFs selected, of which 74 (40%) had known functions through BLAST searching the GenBank database. Majority of the latter group had predicted gene products involved in energy (13%), signal transduction (5.4%), disease/defence (5.9%) and metabolism (5% of the sequenced TDFs). BLAST searching of the wheat stem rust fungus genome database identified 18 TDFs possibly from the stripe rust pathogen, of which 9 were validated of the pathogen origin using PCR-based assays followed by sequencing confirmation. Of the 186 reliable TDFs, 29 homologous to genes known to play a role in disease/defense, signal transduction or uncharacterized genes were further selected for validation of cDNA-AFLP expression patterns using qRT-PCR analyses. Results confirmed the altered expression patterns of 28 (96.5%) genes revealed by the cDNA-AFLP technique.</p> <p>Conclusion</p> <p>The results show that cDNA-AFLP is a reliable technique for studying expression patterns of genes involved in the wheat-stripe rust interactions. Genes involved in compatible interactions between wheat and the stripe rust pathogen were identified and their expression patterns were determined. The present study should be helpful in elucidating the molecular basis of the infection process, and identifying genes that can be targeted for inhibiting the growth and reproduction of the pathogen. Moreover, this study can also be used to elucidate the defence responses of the genes that were of plant origin.</p
    • …
    corecore