10,946 research outputs found

    Self-organized and driven phase synchronization in coupled maps

    Get PDF
    We study the phase synchronization and cluster formation in coupled maps on different networks. We identify two different mechanisms of cluster formation; (a) {\it Self-organized} phase synchronization which leads to clusters with dominant intra-cluster couplings and (b) {\it driven} phase synchronization which leads to clusters with dominant inter-cluster couplings. In the novel driven synchronization the nodes of one cluster are driven by those of the others. We also discuss the dynamical origin of these two mechanisms for small networks with two and three nodes.Comment: 4 pages including 2 figure

    Coupled Map Modeling for Cloud Dynamics

    Get PDF
    A coupled map model for cloud dynamics is proposed, which consists of the successive operations of the physical processes; buoyancy, diffusion, viscosity, adiabatic expansion, fall of a droplet by gravity, descent flow dragged by the falling droplet, and advection. Through extensive simulations, the phases corresponding to stratus, cumulus, stratocumulus and cumulonimbus are found, with the change of the ground temperature and the moisture of the air. They are characterized by order parameters such as the cluster number, perimeter-to-area ratio of a cloud, and Kolmogorov-Sinai entropy.Comment: 9 pages, 4 figure, LaTeX, mpeg simulations available at http://aurora.elsip.hokudai.ac.jp

    Evolutionary origin of power-laws in Biochemical Reaction Network; embedding abundance distribution into topology

    Full text link
    The evolutionary origin of universal statistics in biochemical reaction network is studied, to explain the power-law distribution of reaction links and the power-law distributions of chemical abundances. Using cell models with catalytic reaction network, we find evidence that the power-law distribution in abundances of chemicals emerges by the selection of cells with higher growth speeds. Through the further evolution, this inhomogeneity in chemical abundances is shown to be embedded in the distribution of links, leading to the power-law distribution. These findings provide novel insights into the nature of network evolution in living cells.Comment: 11 pages, 3 figure

    Magnetic Phase Diagrams with Possible Field-induced Antiferroquadrupolar Order in TbB2_2C2_2

    Get PDF
    Magnetic phase diagrams of a tetragonal antiferromagnet TbB2_2C2_2 were clarified by temperature and field dependence of magnetization. It is noticeable that the N{\'e}el temperature in TbB2_2C2_2 is anomalously enhanced with magnetic fields, in particular the enhancement reaches 13.5 K for the {} direction at 10 T. The magnetization processes as well as the phase diagrams are well interpreted assuming that there appear field-induced antiferroquadrupolar ordered phases in TbB2_2C2_2. The phase diagrams of the AFQ compounds in RB2_2C2_2 are systematically understood in terms of the competition with AFQ and AFM interactions.Comment: 4 pages, 4 figures, RevTeX

    Spin distribution of nuclear levels using static path approximation with random-phase approximation

    Get PDF
    We present a thermal and quantum-mechanical treatment of nuclear rotation using the formalism of static path approximation (SPA) plus random-phase approximation (RPA). Naive perturbation theory fails because of the presence of zero-frequency modes due to dynamical symmetry breaking. Such modes lead to infrared divergences. We show that composite zero-frequency excitations are properly treated within the collective coordinate method. The resulting perturbation theory is free from infrared divergences. Without the assumption of individual random spin vectors, we derive microscopically the spin distribution of the level density. The moment of inertia is thereby related to the spin-cutoff parameter in the usual way. Explicit calculations are performed for 56^Fe; various thermal properties are discussed. In particular, we demonstrate that the increase of the moment of inertia with increasing temperature is correlated with the suppression of pairing correlations.Comment: 12 pages, 8 figures, accepted for publication in Physical Review

    Quenching of pairing gap at finite temperature in 184W

    Full text link
    We extract pairing gap in 184^{184}W at finite temperature for the first time from the experimental level densities of 183^{183}W, 184^{184}W, and 185^{185}W using "thermal" odd-even mass difference. We found the quenching of pairing gap near the critical temperature Tc=0.47T_c = 0.47 MeV in the BCS calculations. It is shown that the monopole pairing model with a deformed Woods-Saxon potential explains the reduction of the pairing correlation using the partition function with the number parity projection in the static path approximation plus random-phase approximation.Comment: 5 pages, 4 figures, accepted for publication in PR

    Spectral Evolution of Two High-Energy Gamma-Ray Bursts

    Full text link
    The prompt emission of the gamma-ray bursts is found to be very energetic, releasing ~10^51 ergs in a flash. However, their emission mechanism remains unclear and understanding their spectra is a key to determining the emission mechanism. Many GRB spectra have been analyzed in the sub-MeV energy band, and are usually well described with a smoothly broken power-law model. We present a spectral analysis of two bright bursts (GRB910503 and GRB930506), using BATSE and EGRET spectra that cover more than four decades of energy (30 keV - 200 MeV). Our results show time evolutions of spectral parameters (low-energy & high-energy photon indices and break energy) that are difficult to reconcile with a simple shock-acceleration model.Comment: 8 pages, 2 figures, to appear in the proceedings of "Astrophysical Particle Acceleration in Geospace and Beyond", Chattanooga, 2002, AGU monograp

    Antituberculosis Activity of Brotowali (Tinospora Crispa) Extract and Fractions Against Mycobacterium Tuberculosis Using Microplate Alamar Blue Assay Method

    Full text link
    Tuberculosis (TB), in which caused by pathogenic bacteria, Mycobacterium tuberculosis, has become the major causes of death among all of infectious diseases. The increasing incidence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) has created a need to discover a new antituberculosis drug candidate. The aim of this study was to screen extract and fractions of Tinospora crispa for activity against Mycobacterium tuberculosis H37Rv using the Microplate Alamar Blue Assay (MABA) method. T. crispa extract was prepared by maceration in ethanol (96%) and antituberculosis activity was carried out using MABA method. The result of this study showed that ethanolic extract of T. crispa exhibit antituberculosis activity with minimum inhibition concentration of 12.5 mg/ml

    Replica symmetry breaking in an adiabatic spin-glass model of adaptive evolution

    Full text link
    We study evolutionary canalization using a spin-glass model with replica theory, where spins and their interactions are dynamic variables whose configurations correspond to phenotypes and genotypes, respectively. The spins are updated under temperature T_S, and the genotypes evolve under temperature T_J, according to the evolutionary fitness. It is found that adaptation occurs at T_S < T_S^{RS}, and a replica symmetric phase emerges at T_S^{RSB} < T_S < T_S^{RS}. The replica symmetric phase implies canalization, and replica symmetry breaking at lower temperatures indicates loss of robustness.Comment: 5pages, 2 figure
    • 

    corecore