208 research outputs found

    Effects of resonant single-particle states on pairing correlations

    Full text link
    Effects of resonant single-particle (s.p.) states on the pairing correlations are investigated by an exact treatment of the pairing Hamiltonian on the Gamow shell model basis. We introduce the s.p. states with complex energies into the Richardson equations. The solution shows the property that the resonant s.p. states with large widths are less occupied. The importance of many-body correlations between bound and resonant prticle pairs is shown.Comment: 4 pages, 3 figures, to be published in Phys. Rev.

    Minimal Scenarios for Leptogenesis and CP Violation

    Full text link
    The relation between leptogenesis and CP violation at low energies is analyzed in detail in the framework of the minimal seesaw mechanism. Working, without loss of generality, in a weak basis where both the charged lepton and the right-handed Majorana mass matrices are diagonal and real, we consider a convenient generic parametrization of the Dirac neutrino Yukawa coupling matrix and identify the necessary condition which has to be satisfied in order to establish a direct link between leptogenesis and CP violation at low energies. In the context of the LMA solution of the solar neutrino problem, we present minimal scenarios which allow for the full determination of the cosmological baryon asymmetry and the strength of CP violation in neutrino oscillations. Some specific realizations of these minimal scenarios are considered. The question of the relative sign between the baryon asymmetry and CP violation at low energies is also discussed.Comment: 36 pages, 5 figures; minor corrections and references updated. Final version to appear in Phys. Rev.

    Leptogenesis in Neutrino Textures with Two Zeros

    Full text link
    The leptogenesis is studied in the neutrino textures with two zeros, which reduce the number of independent phases of the CP violation. The phenomenological favored neutrino textures with two zeros are decomposed into the Dirac neutrino mass matrix and the right-handed Majorana one in the see-saw mechanism. Putting the condition to suppress the μeγ\mu \to e\gamma decay enough, the texture zeros of the Dirac neutrino mass matrix are fixed in the framework of the MSSM with right-handed neutrinos. These textures have only one CP violatig phase. The magnitude of each entry of the Dirac mass matrix is determined in order to explain the baryon asymmetry of the universe by solving the Boltzman equations. The relation between the leptogenesis and the low energy CP violation is presented in these textures.Comment: Latex file with 20 pages, 6 eps figure

    b-physics signals of the lightest CP-odd Higgs in the NMSSM at large tan beta

    Full text link
    We investigate the low energy phenomenology of the lighter pseudoscalar A10A_1^0 in the NMSSM. The A10A_1^0 mass can naturally be small due to a global U(1)RU(1)_R symmetry of the Higgs potential, which is only broken by trilinear soft terms. The A10A_1^0 mass is further protected from renormalization group effects in the large tanβ\tan \beta limit. We calculate the bsA10b \to s A_1^0 amplitude at leading order in tanβ\tan \beta and work out the contributions to rare KK, BB and radiative Υ\Upsilon-decays and BBˉB -\bar B mixing. We obtain constraints on the A10A_1^0 mass and couplings and show that masses down to O(10){\cal{O}}(10) MeV are allowed. The bb-physics phenomenology of the NMSSM differs from the MSSM in the appearance of sizeable renormalization effects from neutral Higgses to the photon and gluon dipole operators and the breakdown of the MSSM correlation between the Bsμ+μB_s \to \mu^+ \mu^- branching ratio and BsBˉsB_s - \bar B_s mixing. For A10A_1^0 masses above the tau threshold the A10A_1^0 can be searched for in bsτ+τb \to s \tau^+ \tau^- processes with branching ratios \lsim 10^{-3}.Comment: 18 pages, 3 figures; references adde

    Logarithmic and complex constant term identities

    Full text link
    In recent work on the representation theory of vertex algebras related to the Virasoro minimal models M(2,p), Adamovic and Milas discovered logarithmic analogues of (special cases of) the famous Dyson and Morris constant term identities. In this paper we show how the identities of Adamovic and Milas arise naturally by differentiating as-yet-conjectural complex analogues of the constant term identities of Dyson and Morris. We also discuss the existence of complex and logarithmic constant term identities for arbitrary root systems, and in particular prove complex and logarithmic constant term identities for the root system G_2.Comment: 26 page

    Triggering an eruptive flare by emerging flux in a solar active-region complex

    Full text link
    A flare and fast coronal mass ejection originated between solar active regions NOAA 11514 and 11515 on July 1, 2012 in response to flux emergence in front of the leading sunspot of the trailing region 11515. Analyzing the evolution of the photospheric magnetic flux and the coronal structure, we find that the flux emergence triggered the eruption by interaction with overlying flux in a non-standard way. The new flux neither had the opposite orientation nor a location near the polarity inversion line, which are favorable for strong reconnection with the arcade flux under which it emerged. Moreover, its flux content remained significantly smaller than that of the arcade (approximately 40 %). However, a loop system rooted in the trailing active region ran in part under the arcade between the active regions, passing over the site of flux emergence. The reconnection with the emerging flux, leading to a series of jet emissions into the loop system, caused a strong but confined rise of the loop system. This lifted the arcade between the two active regions, weakening its downward tension force and thus destabilizing the considerably sheared flux under the arcade. The complex event was also associated with supporting precursor activity in an enhanced network near the active regions, acting on the large-scale overlying flux, and with two simultaneous confined flares within the active regions.Comment: Accepted for publication in Topical Issue of Solar Physics: Solar and Stellar Flares. 25 pages, 12 figure

    Supersymmetric Gauge Theories, Intersecting Branes and Free Fermions

    Get PDF
    We show that various holomorphic quantities in supersymmetric gauge theories can be conveniently computed by configurations of D4-branes and D6-branes. These D-branes intersect along a Riemann surface that is described by a holomorphic curve in a complex surface. The resulting I-brane carries two-dimensional chiral fermions on its world-volume. This system can be mapped directly to the topological string on a large class of non-compact Calabi-Yau manifolds. Inclusion of the string coupling constant corresponds to turning on a constant B-field on the complex surface, which makes this space non-commutative. Including all string loop corrections the free fermion theory is elegantly formulated in terms of holonomic D-modules that replace the classical holomorphic curve in the quantum case.Comment: 67 pages, 6 figure

    From weak-scale observables to leptogenesis

    Get PDF
    Thermal leptogenesis is an attractive mechanism for generating the baryon asymmetry of the Universe. However, in supersymmetric models, the parameter space is severely restricted by the gravitino bound on the reheat temperature TRHT_{RH}. For hierarchical light neutrino masses, it is shown that thermal leptogenesis {\it can} work when TRH109T_{RH} \sim 10^{9} GeV. The low-energy observable consequences of this scenario are BR(τγ)108109 BR(\tau \to \ell \gamma) \sim 10^{-8} - 10^{-9} . For higher TRHT_{RH}, thermal leptogenesis works in a larger area of parameter space, whose observable consequences are more ambiguous. A parametrisation of the seesaw in terms of weak-scale inputs is used, so the results are independent of the texture chosen for the GUT-scale Yukawa matrices.Comment: a few references adde

    Reconstructing the Cosmic Expansion History up to Redshift z=6.29 with the Calibrated Gamma-Ray Bursts

    Full text link
    Recently, Gamma-Ray Bursts (GRBs) were proposed to be a complementary cosmological probe to type Ia supernovae (SNIa). GRBs have been advocated to be standard candles since several empirical GRB luminosity relations were proposed as distance indicators. However, there is a so-called circularity problem in the direct use of GRBs. Recently, a new idea to calibrate GRBs in a completely cosmology independent manner has been proposed, and the circularity problem can be solved. In the present work, following the method proposed by Liang {\it et al.}, we calibrate 70 GRBs with the Amati relation using 307 SNIa. Then, following the method proposed by Shafieloo {\it et al.}, we smoothly reconstruct the cosmic expansion history up to redshift z=6.29z=6.29 with the calibrated GRBs. We find some new features in the reconstructed results.Comment: 12 pages, 4 figures, 1 table, revtex4; v2: title changed, accepted by Eur. Phys. J. C; v3: published versio
    corecore