130 research outputs found

    Fault detection system for ICRF transmission line in LHD

    Get PDF
    The transmission line is one of the most important components of ion cyclotron range of frequencies (ICRF) heating devices. In the case of unexpected trouble on the line, such as a breakdown, immediate power-off is necessary in order to avoid severe damage on the line. Breakdowns are difficult to detect with a reflection monitor, since the reflection may originate from a change in the antenna-plasma coupling. In the Large Helical Device (LHD), a Fault Detection System (FDS) for the transmission line was developed, which detects the breakdown utilizing the unbalance of three signals from the both ends of the line. For the precise balancing in the normal condition, the calibration is iteratively conducted. FDS is insensitive to the change of the antenna impedance, therefore, FDS can detect breakdown clearly. Frequency shift is also detectable with the FDS applied to a long transmission line. Therefore, the self-oscillation accompanying frequency shift could be detected in addition to breakdown

    Thermal neutron flux evaluation by a single crystal CVD diamond detector in LHD deuterium experiment

    Get PDF
    The single crystal CVD diamond detector (SDD) was installed in the torus hall of the Large Helical Device (LHD) to measure neutrons with high time resolution and neutron energy resolution. The LiF foil with 95.62 % of 6Li isotope enrichment pasted on the detector was used as the thermal neutron convertor as the energetic ions of 2.0 MeV alpha and 2.7 MeV triton particles generated in LiF foil and deposited the energy into SDD. SDD were exposed to the neutron field in the torus hall of the LHD during the 2nd campaign of the deuterium experiment. The total pulse height in SDD was linearly propotional to the neutron yield in a plasma operation in LHD over 4 orders of magnitude. The energetic alpha and triton were separately measured by SDD with LiF with the thickness of 1.9 μm, although SDD with LiF with the thickness of 350 μm showed a broadened peak due to the large energy loss of energetic particles generated in the bulk of LiF. The modeling with MCNP and PHITS codes well interpreted the pulse height spectra for SDD with LiF with different thicknesses. The results above demonstrated the sufficient time resolution and energy discrimination of SDD used in this work

    Study of ion cyclotron range of frequencies heating characteristics in deuterium plasma in the Large Helical Device

    Get PDF
    The characteristics of ion cyclotron range of frequencies (ICRF) minority ion heating with a hydrogen minority and deuterium majority plasma were studied by ICRF modulation injection experiments in the Large Helical Device (LHD). In recent experiments with deuterium plasma, no significant increase in the neutron emission rate due to ICRF second harmonic deuteron heating was observed. Therefore, in this study, the neutron emission rate was used to refer to the information regarding the thermal ion component. Like the results of the observations of the heating efficiencies at various minority proton ratios, the experimental results showed good agreement with the simple model simulation of ICRF wave absorption. During these experiments, the accelerated minority hydrogen ions were observed by neutral particle analyzers. The counting rates of the energetic particles were higher in the lines of sight passing through the helical ripple than across the magnetic axis, and the counting rate decreased as the minority hydrogen ion ratio increased. The dependence of the minority hydrogen ion ratio on the density of the energetic ions was consistent with the experimentally observed heating efficiencies and simulations. The heating efficiency of ICRF minority ion heating could be well explained by simple model simulation in the LHD deuterium experiment

    Analysis of beam slowing-down process in large helical device based on Fokker–Planck operator including beam–beam Coulomb collision effect

    Get PDF
    The contribution of the beam–beam (b–b) Coulomb collision effect on the fast ion slowing-down process is investigated. The effect is evaluated experimentally in the large helical device (LHD) from the response of the neutron emission rate to the direction of the tangential hydrogen beam, which is used with the tangential deuterium beam. In addition, to analyze the experimental results, a Fokker–Planck (F–P) code is improved. It is observed that the decay time of the neutron emission rate after the deuterium beam is turned off depends on the direction of the hydrogen beam. This trend can be explained by the b–b Coulomb collision effect. The hydrogen beam, which has the same direction as the deuterium beam, deforms the fast deuteron velocity distribution due to the b–b Coulomb collision. As a result, the neutron decay time becomes longer than that with the opposite direction hydrogen beam. Our F–P simulation shows that the b–b Coulomb collision effect contributes to the decay time of the neutron emission rate. This simulation result is qualitatively similar to the experimental result. For quantitative analysis, consideration of the fast ion spatial transport, which is neglected in the present simulation, is required

    Exploring deuterium beam operation and the behavior of the co-extracted electron current in a negative-ion-based neutral beam injector

    Get PDF
    The achievements of the deuterium beam operation of a negative-ion-based neutral beam injector (N-NBI) in the large helical device (LHD) are reported. In beam operation in LHD-NBIs, both hydrogen (H) and deuterium (D) neutral beams were generated by changing the operation gas using the same accelerator. The maximum accelerated deuterium negative-ion current () reaches 46.2 A from two beam sources with the averaged current density being 190 A m−2 for 2 s, and the extracted electron to accelerated ion current ratio () increases to 0.39 using 5.6 V high bias voltage in the first deuterium operation in 2017. An increase of electron density in the vicinity of the plasma grid (PG) surface, which is considered the main reason for the increase of co-extracted electrons in a beam, is confirmed by the half-size research negative-ion source in the neutral beam test stand at the National Institute for Fusion Science (NIFS). The deuterium negative-ion density is also larger than the hydrogen negative-ion density in the vicinity of the PG surface using the same discharge conditions. In the latest experimental campaign in 2018, increases to 55.4 A with the averaged current density being 233 A m−2 for 1.5 s using the shot extraction gap length. The low of 0.31 can be maintained by using high discharge power. The various parameters mentioned above are defined in detail below

    Third Harmonic ICRF Heating in LHD High Beta Experiments

    Get PDF
    The ion cyclotron range of frequencies (ICRF) heating power injection in the hydrogen experiment in LHD was demonstrated after the upgrade of ICRF antennas. The ICRF wave couples and accelerates the energetic particles injected by perpendicular-NBIs with 40 keV. The simulation by the MORH code shows the existence of energetic particles around the ICRF third harmonic resonance layers. As the result of ICRF heating power deposition, the beta value increased by 0.2% in absolute beta mainly due to the increased energetic particle content. The increase of energetic ions particularly around 60 keV, which should be accelerated by the ICRF heating, is observed. The ICRF heating efficiency was approximately 30%–50%, estimated from the break-in-slope analysis at the turn off timing of ICRF power from the stored energy measured by diamagnetic loops. This increase of the stored energy is mostly the contribution of the increased energetic particles. The heating efficiency increases as the density increases

    Extension of high power deuterium operation of negative ion based neutral beam injector in the large helical device

    Get PDF
    Second deuterium operation of the negative ion based neutral beam injector was performed in 2018 in the large helical device. The electron and ion current ratio improves to Ie/Iacc(D) = 0.31 using the short extraction gap distance of 7 mm between the plasma grid (PG) and the extraction grid (EG). The strength of the magnetic field by the electron deflection magnet installed in the EG increases by 17% at the PG ingress surface, which effectively reduces the electron component in the negative ion rich plasma in the vicinity of PG apertures. The reduction of the electron current made it possible to operate at a high power arc discharge and beam extraction. Then, the deuterium negative ion current increases to 55.4 A with the averaged current density of 233 A/m2. The thermal load on the EG using 7 mm gap distance is 0.6 times smaller than the thermal load using a 8 mm gap caused by the reduction of coextracted electron current. The injection beam power increases to 2.9 MW in the beam line BL3, and the total beam injection power increases to 7 MW by three beam lines in the second deuterium campaign

    Development of power combination system for high-power and long-pulse ICRF heating in LHD

    Get PDF
    In the Large Helical Device (LHD), the development of high-power and long-pulse Ion Cyclotron Range of Frequencies (ICRF) heating system is ongoing. The developed Field-Aligned-Impedance-Transforming (FAIT) antenna has the potential for high-power injection of more than 1.8 MW. Here, to achieve this injection power, a power combination system was developed. An optimized power combiner was designed by repeated simulations, and then was fabricated and installed in the ICRF transmission system. Control of the power and the phase of incident waves into the input ports of the power combiner is important for the power combination. Therefore, a real-time control system was developed, and prompt reduction of power loss was demonstrated. As a result, combined powers of more than 2 MW for 6 s and 1 MW for 10 min were successfully achieved

    ICRF Heating Experiment on LHD in Foreseeing a Future Fusion Device

    Get PDF
    Plasma heating experiment using the ion cyclotron range of frequencies (ICRF) heating has been carried out. Aiming at the high power and long pulse heating and application to the future fusion device, the antenna without Faraday shield was tested and newly developed antenna, called FAIT antenna, was used. Steady state experiment was progressed by using the high power ICRF heating with those antennas. Plasma discharge length about 48 minutes was achieved with the heating power of 1.2MW and a line-averaged electron density of 1.2 × 1019 m?3. The injected heating energy reached 3.36 GJ and it is highest in the fusion plasma experiments. We will promote the high power steady state research involving the evaluation of the antennas and heating performance

    Energetic particle transport and loss induced by helically-trapped energetic-ion-driven resistive interchange modes in the Large Helical Device

    Get PDF
    In this work, energetic-ion confinement and loss due to energetic-ion driven magnetohydrodynamic modes are studied using comprehensive neutron diagnostics and orbit-following numerical simulations for the Large Helical Device (LHD). The neutron flux monitor is employed in order to obtain global confinement of energetic ions and two installed vertical neutron cameras (VNCs) viewing different poloidal cross-sections are utilized in order to measure the radial profile of energetic ions. A strong helically-trapped energetic-ion-driven resistive interchange mode (EIC) excited in relatively low-density plasma terminated high-temperature state in LHD. Changes in the neutron emission profile due to the EIC excitation are clearly visualized by the VNCs. The reduction in the neutron signal for the helical ripple valley increases with EIC amplitude, which reaches approximately 50%. In addition to the EIC experiment, orbit-following simulations using the DELTA5D code with EIC fluctuations were performed to assess the energetic-ion transport and loss. Two-dimensional temporal evolution results show that the neutron emissivity at the helical ripple decreases significantly due to the EIC. The rapid reduction in neutron emissivity shows that the helically-trapped beam ions immediately escape from the plasma. The reduction in the VNC signals for the helical ripple valley and the total neutron emission rate increase with increasing EIC amplitude, as observed in the experiment. Calculated line-integrated neutron emission results show that the profile measured by VNC1 has one peak, whereas the profile measured by VNC2 has two peaks, as observed in the experiment. Although the neutron emission profile for VNC2 has a relatively wide peak compared with the experimental results, the significant decrease in neutron signal corresponding to the helical ripple valley was successfully reproduced
    • …
    corecore