2,979 research outputs found
Strong damping of phononic heat current by magnetic excitations in SrCu_2(BO_3)_2
Measurements of the thermal conductivity as a function of temperature and
magnetic field in the 2D dimer spin system SrCu(BO) are presented.
In zero magnetic field the thermal conductivity along and perpendicular to the
magnetic planes shows a pronounced double-peak structure as a function of
temperature. The low-temperature maximum is drastically suppressed with
increasing magnetic field. Our quantitative analysis reveals that the heat
current is due to phonons and that the double-peak structure arises from
pronounced resonant scattering of phonons by magnetic excitations.Comment: a bit more than 4 pages, 2 figures included; minor changes to improve
the clarity of the presentatio
Instability of isolated triplet excitations on the Shastry-Sutherland lattice (SSL)
Configurations of singlets and triplets on the SSL have been proposed in the
literature as variational ground states of the Shastry-Sutherland model at
fixed magnetization M. We prove, that isolated triplet excitations on the SSL
are unstable if the coupling alpha falls below a critical value alpha_c=2.0
(approx.). The instability should be visible in the compound SrCu_2(BO_3)_2
where a coupling alpha^*=1.48 is realized.Comment: 4 pages, 4 figures, RevTe
Far infrared study of the two dimensional dimer spin system SrCu_2(BO_3)_2
Using far-infrared spectroscopy in magnetic fields up to 12T we have studied
a two-dimensional dimer spin gap system SrCu_2(BO_3)_2. We found several
infrared active modes in the dimerized state (below 10K) in the frequency range
from 3 to 100cm^-1. The measured splitting from the ground state to the excited
triplet M_S=0 sublevel is Delta_1=24.2cm^-1 and the other two triplet state
sublevels in zero magnetic field are 1.4cm^-1 below and above the M_S=0
sublevel. Another multiplet is at Delta_2=37.6cm^-1 from the ground state. A
strong electric dipole active transition polarized in the (ab)-plane is
activated in the dimer spin system below 15K at 52cm^-1.Comment: 4 pages including 5 figures, submitted to PRB, instrumental arte
facts remove
Heat transport in SrCu_2(BO_3)_2 and CuGeO_3
In the low dimensional spin systems and the
thermal conductivities along different crystal directions show pronounced
double-peak structures and strongly depend on magnetic fields. For
the experimental data can be described by a purely phononic
heat current and resonant scattering of phonons by magnetic excitations. A
similar effect seems to be important in , too but, in addition, a
magnetic contribution to the heat transport may be present.Comment: 4 pages, 2 figures; appears in the proceedings of the SCES2001
(Physica B
Field-Induced Order and Magnetization Plateaux in Frustrated Antiferromagnets
We argue that collinearly ordered states which exist in strongly frustrated
spin systems for special rational values of the magnetization are stabilized by
thermal as well as quantum fluctuations. These general predictions are tested
by Monte Carlo simulations for the classical and Lanczos diagonalization for
the S=1/2 frustrated square-lattice antiferromagnet.Comment: 4 pages, 2 PostScript figures included; to appear in the proceedings
of SCES2001, Ann Arbor, August 6-10, 2001 (Physica B
Magnetic frustration in a stoichiometric spin-chain compound, CaCoIrO
The temperature dependent ac and dc magnetization and heat capacity data of
CaCoIrO, a spin-chain compound crystallizing in a KCdCl-derived
rhombohedral structure, show the features due to magnetic ordering of a
frustrated-type below about 30 K, however without exhibiting the signatures of
the so-called "partially disordered antiferromagnetic structure" encountered in
the isostructural compounds, CaCoO and CaCoRhO. This class
of compounds thus provides a variety for probing the consequences of magnetic
frustration due to topological reasons in stoichiometric spin-chain materials,
presumably arising from subtle differences in the interchain and intrachain
magnetic coupling strengths. This compound presents additional interesting
situations in the sense that, ac susceptibility exhibits a large frequency
dependence in the vicinity of 30 K uncharacteristic of conventional
spin-glasses, with this frustrated magnetic state being robust to the
application of external magnetic fields.Comment: Physical Review (Rapid Communications), in pres
Geodynamo and mantle convection simulations on the Earth Simulator using the Yin-Yang grid
We have developed finite difference codes based on the Yin-Yang grid for the
geodynamo simulation and the mantle convection simulation. The Yin-Yang grid is
a kind of spherical overset grid that is composed of two identical component
grids. The intrinsic simplicity of the mesh configuration of the Yin-Yang grid
enables us to develop highly optimized simulation codes on massively parallel
supercomputers. The Yin-Yang geodynamo code has achieved 15.2 Tflops with 4096
processors on the Earth Simulator. This represents 46% of the theoretical peak
performance. The Yin-Yang mantle code has enabled us to carry out mantle
convection simulations in realistic regimes with a Rayleigh number of
including strongly temperature-dependent viscosity with spatial contrast up to
.Comment: Plenary talk at SciDAC 200
- …