6,024 research outputs found

    Evolution and global collapse of trapped Bose condensates under variations of the scattering length

    Full text link
    We develop the idea of selectively manipulating the condensate in a trapped Bose-condensed gas, without perturbing the thermal cloud. The idea is based on the possibility to modify the mean field interaction between atoms (scattering length) by nearly resonant incident light or by spatially uniform change of the trapping magnetic field. For the gas in the Thomas-Fermi regime we find analytical scaling solutions for the condensate wavefunction evolving under arbitrary variations of the scattering length aa. The change of aa from positive to negative induces a global collapse of the condensate, and the final stages of the collapse will be governed by intrinsic decay processes.Comment: 4 pages, LaTeX, other comments are at http://WWW.amolf.nl/departments/quantumgassen/TITLE.HTM

    Existence of two-channel Kondo regime for tunneling impurities with resonant scattering

    Full text link
    Dynamical tunneling systems have been proposed earlier to display a two-channel Kondo effect, the orbital index of the particle playing the role of a pseudospin in the equivalent Kondo problem, and the spin being a silent channel index. However, as shown recently by Aleiner et al. [Phys. Rev. Lett. 86, 2629 (2001)], the predicted two-channel Kondo behavior can never be observed in the weak coupling regime, where the tunneling induced splitting of the levels of the tunneling system always dominates the physics. Here we show that the above scenario changes completely if the conduction electrons are scattered by resonant scattering off the tunneling impurity; Then - as a non-perturbative analysis reveals - the two-channel Kondo regime can easily be reached.Comment: 10 PRB page

    The transverse breathing mode of an elongated Bose-Einstein condensate

    Full text link
    We study experimentally the transverse monopole mode of an elongated rubidium condensate. Due to the scaling invariance of the non-linear Schr\"odinger (Gross-Pitaevski) equation, the oscillation is monochromatic and sinusoidal at short times, even under strong excitation. For ultra-low temperatures, the quality factor Q=ω0/γ0Q=\omega_0/\gamma_0 can exceed 2000, where ω0\omega_0 and γ0\gamma_0 are the mode angular frequency and damping rate. This value is much larger than any previously reported for other eigenmodes of a condensate. We also present the temperature variation of ω0\omega_0 and γ0\gamma_0.Comment: 4 pages, 4 figures, submitted to PR

    Ideal Gases in Time-Dependent Traps

    Full text link
    We investigate theoretically the properties of an ideal trapped gas in a time-dependent harmonic potential. Using a scaling formalism, we are able to present simple analytical results for two important classes of experiments: free expansion of the gas upon release of the trap; and the response of the gas to a harmonic modulation of the trapping potential is investigated. We present specific results relevant to current experiments on trapped Fermions.Comment: 5 pages, 3 eps figure

    Simulations of thermal Bose fields in the classical limit

    Get PDF
    We demonstrate that the time-dependent projected Gross-Pitaevskii equation derived earlier [Davis, et al., J. Phys. B 34, 4487 (2001)] can represent the highly occupied modes of a homogeneous, partially-condensed Bose gas. We find that this equation will evolve randomised initial wave functions to equilibrium, and compare our numerical data to the predictions of a gapless, second-order theory of Bose-Einstein condensation [S. A. Morgan, J. Phys. B 33, 3847 (2000)]. We find that we can determine the temperature of the equilibrium state when this theory is valid. Outside the range of perturbation theory we describe how to measure the temperature of our simulations. We also determine the dependence of the condensate fraction and specific heat on temperature for several interaction strengths, and observe the appearance of vortex networks. As the Gross-Pitaevskii equation is non-perturbative, we expect that it can describe the correct thermal behaviour of a Bose gas as long as all relevant modes are highly occupied.Comment: 15 pages, 12 figures, revtex4, follow up to Phys. Rev. Lett. 87 160402 (2001). v2: Modified after referee comments. Extra data added to two figures, section on temperature determination expande

    Influence of nearly resonant light on the scattering length in low-temperature atomic gases

    Get PDF
    We develop the idea of manipulating the scattering length aa in low-temperature atomic gases by using nearly resonant light. As found, if the incident light is close to resonance with one of the bound pp levels of electronically excited molecule, then virtual radiative transitions of a pair of interacting atoms to this level can significantly change the value and even reverse the sign of aa. The decay of the gas due to photon recoil, resulting from the scattering of light by single atoms, and due to photoassociation can be minimized by selecting the frequency detuning and the Rabi frequency. Our calculations show the feasibility of optical manipulations of trapped Bose condensates through a light-induced change in the mean field interaction between atoms, which is illustrated for 7^7Li.Comment: 12 pages, 1 Postscript figur

    1D model for the dynamics and expansion of elongated Bose-Einstein condensates

    Full text link
    We present a 1D effective model for the evolution of a cigar-shaped Bose-Einstein condensate in time dependent potentials whose radial component is harmonic. We apply this model to investigate the dynamics and expansion of condensates in 1D optical lattices, by comparing our predictions with recent experimental data and theoretical results. We also discuss negative-mass effects which could be probed during the expansion of a condensate moving in an optical lattice.Comment: RevTeX4, 8 pages, 10 figures, extended and revised versio

    Giant mass and anomalous mobility of particles in fermionic systems

    Full text link
    We calculate the mobility of a heavy particle coupled to a Fermi sea within a non-perturbative approach valid at all temperatures. The interplay of particle recoil and of strong coupling effects, leading to the orthogonality catastrophe for an infinitely heavy particle, is carefully taken into account. We find two novel types of strong coupling effects: a new low energy scale T⋆T^{\star} and a giant mass renormalization in the case of either near-resonant scattering or a large transport cross section σ\sigma. The mobility is shown to obey two different power laws below and above T⋆T^{\star}. For σ≫λf2\sigma\gg\lambda_f^2, where λf\lambda_f is the Fermi wave length, an exponentially large effective mass suppresses the mobility.Comment: 4 pages, 4 figure

    Dynamics of two interacting Bose-Einstein condensates

    Full text link
    We analize the dynamics of two trapped interacting Bose-Einstein condensates and indentify two regimes for the evolution: the regime of slow periodic oscillations and the regime of strong non-linear mixing leading to the damping of the relative motion of the condensates. We compare our predictions with an experiment recently performed at JILA.Comment: 4 pages RevTeX, 3 eps figure
    • …
    corecore