45 research outputs found
Routes for breaching and protecting genetic privacy
We are entering the era of ubiquitous genetic information for research,
clinical care, and personal curiosity. Sharing these datasets is vital for
rapid progress in understanding the genetic basis of human diseases. However,
one growing concern is the ability to protect the genetic privacy of the data
originators. Here, we technically map threats to genetic privacy and discuss
potential mitigation strategies for privacy-preserving dissemination of genetic
data.Comment: Draft for comment
A FAIR guide for data providers to maximise sharing of human genomic data
It is generally acknowledged that, for reproducibility and progress of human genomic research, data sharing is critical. For every sharing transaction, a successful data exchange is produced between a data consumer and a data provider. Providers of human genomic data (e.g., publicly or privately funded repositories and data archives) fulfil their social contract with data donors when their shareable data conforms to FAIR (findable, accessible, interoperable, reusable) principles. Based on our experiences via Repositive (https://repositive.io), a leading discovery platform cataloguing all shared human genomic datasets, we propose guidelines for data providers wishing to maximise their shared data’s FAIRness.
Citation: Corpas M, Kovalevskaya NV, McMurray A, Niel
Germline contamination and leakage in whole genome somatic single nucleotide variant detection
PlatformTM, a standards-based data custodianship platform for translational medicine research
An unbiased index to quantify participant’s phenotypic contribution to an open-access cohort
Promises and Prospects of Microbiome Studies
Since Anthony van Leeuwenhoek, first microscopic observations of the unseen microbiota and the more recent realization that little of the microbes in the biosphere are known, humans have developed a deep curiosity to fully understand the inner workings of the microbial realm. Our ability to characterize the complexity of microbial communities in their natural habitats has dramatically improved over the past decade thanks to advances in high-throughput methodologies. By eliminating the need to isolate and culture individual species, metagenomics approaches have removed many of the obstacles that hindered research in the ecology of mixed microbial consortia, providing valuable information about the diversity, composition, function, and metabolic capability of the community. Microbes are the unseen majority with the capability to colonize every environment, including our bodies. The establishment and composition of a stable human microbiome is determined by the host genetics, immunocompetence, and life-style choices. Our life-style choices determine our exposure to many external and internal environmental factors that permanently or temporarily can influence our microbiome composition. Figure 1 illustrates some of the life-style-related factors that might influence the microbiota of the skin, mouth, and gut. It is not limited to what we carry, touch, breath, and eat. Other dispersal vectors include secretion, excretions, aerosols, air flow, animals, moving surfaces, water, beverages, food, contact, wind, tools, toiletry, and others. These influence the microbiome membership, who are present, and they have the ability to participate in the microbiome dynamic within an environment. The establishment of a microbial community is dependent on many environmental factors, including pH, temperature, altitude, weather, soil type, nutrient availability, relative humidity, air quality, pollutants, microbial competitors, and others. In other words, we are superorganisms interconnected with other living forms on this Earth
