217 research outputs found

    Unraveling Substituent Effects on the Glass Transition Temperatures of Biorenewable Polyesters

    Get PDF
    Converting biomass-based feedstocks into polymers not only reduces our reliance on fossil fuels, but also furnishes multiple opportunities to design biorenewable polymers with targeted properties and functionalities. Here we report a series of high glass transition temperature (Tg up to 184 °C) polyesters derived from sugar-based furan derivatives as well as a joint experimental and theoretical study of substituent effects on their thermal properties. Surprisingly, we find that polymers with moderate steric hindrance exhibit the highest Tg values. Through a detailed Ramachandran-type analysis of the rotational flexibility of the polymer backbone, we find that additional steric hindrance does not necessarily increase chain stiffness in these polyesters. We attribute this interesting structure-property relationship to a complex interplay between methylinduced steric strain and the concerted rotations along the polymer backbone. We believe that our findings provide key insight into the relationship between structure and thermal properties across a range of synthetic polymers

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Crystal Structure of Reovirus Attachment Protein σ1 in Complex with Sialylated Oligosaccharides

    Get PDF
    Many viruses attach to target cells by binding to cell-surface glycans. To gain a better understanding of strategies used by viruses to engage carbohydrate receptors, we determined the crystal structures of reovirus attachment protein σ1 in complex with α-2,3-sialyllactose, α-2,6-sialyllactose, and α-2,8-di-siallylactose. All three oligosaccharides terminate in sialic acid, which serves as a receptor for the reovirus serotype studied here. The overall structure of σ1 resembles an elongated, filamentous trimer. It contains a globular head featuring a compact β-barrel, and a fibrous extension formed by seven repeating units of a triple β-spiral that is interrupted near its midpoint by a short α -helical coiled coil. The carbohydrate-binding site is located between β-spiral repeats two and three, distal from the head. In all three complexes, the terminal sialic acid forms almost all of the contacts with σ1 in an identical manner, while the remaining components of the oligosaccharides make little or no contacts. We used this structural information to guide mutagenesis studies to identify residues in σ1 that functionally engage sialic acid by assessing hemagglutination capacity and growth in murine erythroleukemia cells, which require sialic acid binding for productive infection. Our studies using σ1 mutant viruses reveal that residues 198, 202, 203, 204, and 205 are required for functional binding to sialic acid by reovirus. These findings provide insight into mechanisms of reovirus attachment to cell-surface glycans and contribute to an understanding of carbohydrate binding by viruses. They also establish a filamentous, trimeric carbohydrate-binding module that could potentially be used to endow other trimeric proteins with carbohydrate-binding properties

    Allopregnanolone-induced rise in intracellular calcium in embryonic hippocampal neurons parallels their proliferative potential

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Factors that regulate intracellular calcium concentration are known to play a critical role in brain function and neural development, including neural plasticity and neurogenesis. We previously demonstrated that the neurosteroid allopregnanolone (APα; 5α-pregnan-3α-ol-20-one) promotes neural progenitor proliferation <it>in vitro </it>in cultures of rodent hippocampal and human cortical neural progenitors, and <it>in vivo </it>in triple transgenic Alzheimer's disease mice dentate gyrus. We also found that APα-induced proliferation of neural progenitors is abolished by a calcium channel blocker, nifedipine, indicating a calcium dependent mechanism for the proliferation.</p> <p>Methods</p> <p>In the present study, we investigated the effect of APα on the regulation of intracellular calcium concentration in E18 rat hippocampal neurons using ratiometric Fura2-AM imaging.</p> <p>Results</p> <p>Results indicate that APα rapidly increased intracellular calcium concentration in a dose-dependent and developmentally regulated manner, with an EC<sub>50 </sub>of 110 ± 15 nM and a maximal response occurring at three days <it>in vitro</it>. The stereoisomers 3β-hydroxy-5α-hydroxy-pregnan-20-one, and 3β-hydroxy-5β-hydroxy-pregnan-20-one, as well as progesterone, were without significant effect. APα-induced intracellular calcium concentration increase was not observed in calcium depleted medium and was blocked in the presence of the broad spectrum calcium channel blocker La<sup>3+</sup>, or the L-type calcium channel blocker nifedipine. Furthermore, the GABA<sub>A </sub>receptor blockers bicuculline and picrotoxin abolished APα-induced intracellular calcium concentration rise.</p> <p>Conclusion</p> <p>Collectively, these data indicate that APα promotes a rapid, dose-dependent, stereo-specific, and developmentally regulated increase of intracellular calcium concentration in rat embryonic hippocampal neurons via a mechanism that requires both the GABA<sub>A </sub>receptor and L-type calcium channel. These data suggest that APα-induced intracellular calcium concentration increase serves as the initiation mechanism whereby APα promotes neurogenesis.</p

    What is the role of the film viewer? The effects of narrative comprehension and viewing task on gaze control in film

    Get PDF
    Film is ubiquitous, but the processes that guide viewers' attention while viewing film narratives are poorly understood. In fact, many film theorists and practitioners disagree on whether the film stimulus (bottom-up) or the viewer (top-down) is more important in determining how we watch movies. Reading research has shown a strong connection between eye movements and comprehension, and scene perception studies have shown strong effects of viewing tasks on eye movements, but such idiosyncratic top-down control of gaze in film would be anathema to the universal control mainstream filmmakers typically aim for. Thus, in two experiments we tested whether the eye movements and comprehension relationship similarly held in a classic film example, the famous opening scene of Orson Welles' Touch of Evil (Welles & Zugsmith, Touch of Evil, 1958). Comprehension differences were compared with more volitionally controlled task-based effects on eye movements. To investigate the effects of comprehension on eye movements during film viewing, we manipulated viewers' comprehension by starting participants at different points in a film, and then tracked their eyes. Overall, the manipulation created large differences in comprehension, but only produced modest differences in eye movements. To amplify top-down effects on eye movements, a task manipulation was designed to prioritize peripheral scene features: a map task. This task manipulation created large differences in eye movements when compared to participants freely viewing the clip for comprehension. Thus, to allow for strong, volitional top-down control of eye movements in film, task manipulations need to make features that are important to narrative comprehension irrelevant to the viewing task. The evidence provided by this experimental case study suggests that filmmakers' belief in their ability to create systematic gaze behavior across viewers is confirmed, but that this does not indicate universally similar comprehension of the film narrative

    Past, Present, and Future X-Ray and Gamma-Ray Missions

    Get PDF
    X- and -ray astronomy began in the early sixties of the last century with balloons flights, sounding rocket experiment and satellites. Long before space satellite detected X- and -rays emitted by cosmic sources, scientists had known that the Universe should be producing these photons. In this chapter we provided an overview of past and present missions that has made the X- and -ray astronomy an integral part of astronomical research, and prospects of future developments
    corecore