496 research outputs found

    Soft Spectrum in Yukawa-Gauge Mediation

    Full text link
    We introduce a model independent parametrization for a subclass of gauge mediated theories, which we refer to as Yukawa-gauge mediation. Within this formalism we study the resulting soft masses in the visible spectrum. We find general expressions for the gaugino and scalar masses. Under generic conditions, the gaugino mass is screened, vanishing at first order in the SUSY breaking scale.Comment: 22 pages, 4 figures; v2: minor corrections, published versio

    Global Symmetries and D-Terms in Supersymmetric Field Theories

    Full text link
    We study the role of D-terms in supersymmetry (SUSY) breaking. By carefully analyzing the SUSY multiplets containing various conserved currents in theories with global symmetries, we obtain a number of constraints on the renormalization group flow in supersymmetric field theories. Under broad assumptions, these results imply that there are no SUSY-breaking vacua, not even metastable ones, with parametrically large D-terms. This explains the absence of such D-terms in models of dynamical SUSY-breaking. There is, however, a rich class of calculable models which generate comparable D-terms and F-terms through a variety of non-perturbative effects; these D-terms can be non-abelian. We give several explicit examples of such models, one of which is a new calculable limit of the 3-2 model.Comment: 34 pages, 2 figures; reference added, minor change

    Direct Mediation and Metastable Supersymmetry Breaking for SO(10)

    Full text link
    We examine a metastable N=1\mathcal{N}=1 Macroscopic SO(N) SQCD model of Intriligator, Seiberg and Shih (ISS). We introduce various baryon and meson deformations, including multitrace operators and explore embedding an SO(10) parent of the standard model into two weakly gauged flavour sectors. Direct fundamental messengers and the symmetric pseudo-modulus messenger mediate SUSY breaking to the MSSM. Gaugino and sfermion masses are computed and compared for each deformation type. We also explore reducing the rank of the magnetic quark matrix of the ISS model and find an additional fundamental messenger.Comment: 43 pages, Latex. Version to appear in JHEP

    Discovery Potential for Low-Scale Gauge Mediation at Early LHC

    Full text link
    Low-scale gauge-mediated supersymmetry(SUSY)-breaking (GMSB) models with gravitino mass m_{3/2}<16 eV are attractive, since there are no flavor and cosmological problems. In this paper, we thoroughly study the collider signal in the case that the next-to-lightest SUSY particle is the bino or slepton and investigate the discovery potential of the LHC. Our result is applicable to a wider class of GMSB models other than the minimal GMSB models and we pay particular attention to realistic experimental setups. We also apply our analysis to the minimal GMSB models with a metastable SUSY-breaking vacuum and we show, by requiring sufficient stability of the SUSY-breaking vacuum, these models can be tested at an early stage of the LHC.Comment: 21 pages, 7 figures.Texts in section 3.2.2 and 3.2.4 are revised. Captions change

    General Messenger Gauge Mediation

    Full text link
    We discuss theories of gauge mediation in which the hidden sector consists of two subsectors which are weakly coupled to each other. One sector is made up of messengers and the other breaks supersymmetry. Each sector by itself may be strongly coupled. We provide a unifying framework for such theories and discuss their predictions in different settings. We show how this framework incorporates all known models of messengers. In the case of weakly-coupled messengers interacting with spurions through the superpotential, we prove that the sfermion mass-squared is positive, and furthermore, that there is a lower bound on the ratio of the sfermion mass to the gaugino mass.Comment: 37 pages; minor change

    A microscopic theory of gauge mediation

    Get PDF
    We construct models of indirect gauge mediation where the dynamics responsible for breaking supersymmetry simultaneously generates a weakly coupled subsector of messengers. This provides a microscopic realization of messenger gauge mediation where the messenger and hidden sector fields are unified into a single sector. The UV theory is SQCD with massless and massive quarks plus singlets, and at low energies it flows to a weakly coupled quiver gauge theory. One node provides the primary source of supersymmetry breaking, which is then transmitted to the node giving rise to the messenger fields. These models break R-symmetry spontaneously, produce realistic gaugino and sfermion masses, and give a heavy gravitino.Comment: 24 pages, 2 figures, accepted to JHEP for publicatio

    On the Spectrum of Direct Gaugino Mediation

    Full text link
    In direct gauge mediation, the gaugino masses are anomalously small, giving rise to a split SUSY spectrum. Here we investigate the superpartner spectrum in a minimal version of "direct gaugino mediation." We find that the sfermion masses are comparable to those of the gauginos - even in the hybrid gaugino-gauge mediation regime - if the messenger scale is sufficiently small.Comment: 21 pages, 4 figures; V2: refs. adde

    General Gauge Mediation with Gauge Messengers

    Get PDF
    We generalize the General Gauge Mediation formalism to allow for the possibility of gauge messengers. Gauge messengers occur when charged matter fields of the susy-breaking sector have non-zero F-terms, which leads to tree-level, susy-breaking mass splittings in the gauge fields. A classic example is that SU(5) / SU(3) x SU(2) x U(1) gauge fields could be gauge messengers. We give a completely general, model independent, current-algebra based analysis of gauge messenger mediation of susy-breaking to the visible sector. Characteristic aspects of gauge messengers include enhanced contributions to gaugino masses, (tachyonic) sfermion mass-squareds generated already at one loop, and also at two loops, and significant one-loop A-terms, already at the messenger scale.Comment: 79 pages, 5 figure

    Exactly Marginal Deformations and Global Symmetries

    Full text link
    We study the problem of finding exactly marginal deformations of N=1 superconformal field theories in four dimensions. We find that the only way a marginal chiral operator can become not exactly marginal is for it to combine with a conserved current multiplet. Additionally, we find that the space of exactly marginal deformations, also called the "conformal manifold," is the quotient of the space of marginal couplings by the complexified continuous global symmetry group. This fact explains why exactly marginal deformations are ubiquitous in N=1 theories. Our method turns the problem of enumerating exactly marginal operators into a problem in group theory, and substantially extends and simplifies the previous analysis by Leigh and Strassler. We also briefly discuss how to apply our analysis to N=2 theories in three dimensions.Comment: 23 pages, 2 figure

    Simplified R-Symmetry Breaking and Low-Scale Gauge Mediation

    Full text link
    We argue that some of the difficulties in constructing realistic models of low-scale gauge mediation are artifacts of the narrow set of models that have been studied. In particular, much attention has been payed to the scenario in which the Goldstino superfield in an O'Raifeartaigh model is responsible for both supersymmetry breaking and R-symmetry breaking. In such models, the competing problems of generating sufficiently massive gauginos while preserving an acceptably light gravitino can be quite challenging. We show that by sharing the burdens of breaking supersymmetry and R-symmetry with a second field, these problems are easily solved even within the O'Raifeartaigh framework. We present explicit models realizing minimal gauge mediation with a gravitino mass in the eV range that are both calculable and falsifiable.Comment: 31 pages, 4 figures, references added, minor change
    corecore